Python | Pandas dataframe.cummax()

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analyzing data much easier.

Pandas dataframe.cummax() is used to find the cumulative maximum value over any axis. Each cell is populated with the maximum value seen so far.

Syntax: DataFrame.cummax(axis=None, skipna=True, *args, **kwargs)

Parameters:
axis : {index (0), columns (1)}
skipna : Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns: cummax : Series

Example #1: Use cummax() function to find the cumulative maximum value along the index axis.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, 6, 4],
                   "B":[11, 2, 4, 3],
                   "C":[4, 3, 8, 5], 
                   "D":[5, 4, 2, 8]})
  
# Print the dataframe
df

chevron_right


Output :

Now find the cumulative maximum value over the index axis

filter_none

edit
close

play_arrow

link
brightness_4
code

# To find the cumulative max
df.cummax(axis = 0)

chevron_right


Output :

 

Example #2: Use cummax() function to find the cumulative maximum value along the column axis.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, 6, 4],
                   "B":[11, 2, 4, 3],
                   "C":[4, 3, 8, 5], 
                   "D":[5, 4, 2, 8]})
  
# To find the cumulative max along column axis
df.cummax(axis = 1)

chevron_right


Output :

 

Example #3: Use cummax() function to find the cumulative maximum value along the index axis in a data frame with NaN value.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas as pd
import pandas as pd
  
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, None, 4],
                   "B":[None, 2, 4, 3],
                   "C":[4, 3, 8, 5], 
                   "D":[5, 4, 2, None]})
  
# To find the cumulative max
df.cummax(axis = 0, skipna = True)

chevron_right


Output :



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.