Python | Pandas.Categorical()
pandas.Categorical(val, categories = None, ordered = None, dtype = None) : It represents a categorical variable. Categorical are a pandas data type that corresponds to the categorical variables in statistics. Such variables take on a fixed and limited number of possible values. For examples – grades, gender, blood group type etc.
Also, in the case of categorical variables, logical order is not the same as categorical data e.g. “one”, “two”, “three”. But the sorting of these variables uses logical order.
Parameters- val : [list-like] The values of categorical. categories : [index like] Unique categorisation of the categories. ordered : [boolean] If false, then the categorical is treated as unordered. dtype : [CategoricalDtype] an instance. Error- ValueError : If the categories do not validate. TypeError : If an explicit ordered = True but categorical can't be sorted. Return- Categorical variable
Code:
Python3
# Python code explaining # numpy.pandas.Categorical() # importing libraries import numpy as np import pandas as pd # Categorical using dtype c = pd.Series([ "a" , "b" , "d" , "a" , "d" ], dtype = "category" ) print ( "\nCategorical without pandas.Categorical() : \n" , c) c1 = pd.Categorical([ 1 , 2 , 3 , 1 , 2 , 3 ]) print ( "\n\nc1 : " , c1) c2 = pd.Categorical([ 'e' , 'm' , 'f' , 'i' , 'f' , 'e' , 'h' , 'm' ]) print ( "\nc2 : " , c2) |
Output :
Python3
# Ordered = True c3 = pd.Categorical([ 'e' , 'm' , 'f' , 'i' , 'f' , 'e' , 'h' , 'm' ], ordered = True ) print ( "\nc3 : " , c3) |
Output :
Python3
# Mixed categories c4 = pd.Categorical([ 'a' , 2 , 3 , 1 , 2 , 3 ]) print ( "\nc4 : " , c4) c5 = pd.Categorical([ 'a' , 2 , 3 , 1 , 2 , 3 ], ordered = True ) print ( "\nc5 : " , c5) |
Output :
Python3
# using categories attribute c6 = pd.Categorical([ 1 , 2 , 3 , 1 , 2 , 3 ], categories = [ 4 , 1 , 3 , 5 ]) print ( "\nc6 : " , c6) print ( "\n\nSeries : \n" , pd.Series(c6)) df = pd.DataFrame({ "A" :[ 1 , 2 , 3 , 1 , 2 , 3 ]}) df[ "B" ] = c6 print ( "\n\nDataframe : \n" , df) |
Output :
Please Login to comment...