Skip to content
Related Articles

Related Articles

Python OpenCV – Affine Transformation
  • Difficulty Level : Hard
  • Last Updated : 21 Apr, 2020

OpenCV is the huge open-source library for computer vision, machine learning, and image processing and now it plays a major role in real-time operation which is very important in today’s systems. By using it, one can process images and videos to identify objects, faces, or even the handwriting of a human. When it integrated with various libraries, such as Numpuy, Python is capable of processing the OpenCV array structure for analysis.

Note: For more information, refer to OpenCV Python Tutorial

Affine Transformation

In Affine transformation, all parallel lines in the original image will still be parallel in the output image. To find the transformation matrix, we need three points from input image and their corresponding locations in the output image. Then cv2.getAffineTransform will create a 2×3 matrix which is to be passed to cv2.warpAffine.

cv2.getAffineTransform method:

Syntax: cv2.getPerspectiveTransform(src, dst)



Parameters:
src: Coordinates of quadrangle vertices in the source image.
dst: Coordinates of the corresponding quadrangle vertices in the destination image.

cv2.warpAffine method:

Syntax: cv2.warpAffine(src, M, dsize, dst, flags, borderMode, borderValue)

Parameters:
src: input image.
dst: output image that has the size dsize and the same type as src.
M: transformation matrix.
dsize: size of the output image.
flags: combination of interpolation methods (see resize() ) and the optional flag
WARP_INVERSE_MAP that means that M is the inverse transformation (dst->src).
borderMode: pixel extrapolation method; when borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to the “outliers” in the source image are not modified by the function.
borderValue: value used in case of a constant border; by default, it is 0.

Example 1:




import cv2
import numpy as np
from matplotlib import pyplot as plt
  
  
img = cv2.imread('food.jpeg')
rows, cols, ch = img.shape
  
pts1 = np.float32([[50, 50],
                   [200, 50], 
                   [50, 200]])
  
pts2 = np.float32([[10, 100],
                   [200, 50], 
                   [100, 250]])
  
M = cv2.getAffineTransform(pts1, pts2)
dst = cv2.warpAffine(img, M, (cols, rows))
  
plt.subplot(121)
plt.imshow(img)
plt.title('Input')
  
plt.subplot(122)
plt.imshow(dst)
plt.title('Output')
  
plt.show()
  
# Displaying the image
while(1):
      
    cv2.imshow('image', img)
    if cv2.waitKey(20) & 0xFF == 27:
        break
          
cv2.destroyAllWindows()

Output:
Python OpenCV: Affine Transformation

Example 2:




import cv2
import numpy as np
from matplotlib import pyplot as plt
  
  
img = cv2.imread('food.jpeg')
rows, cols, ch = img.shape
  
pts1 = np.float32([[50, 50], 
                   [200, 50],
                   [50, 200]])
  
pts2 = np.float32([[10, 100],
                   [200, 50], 
                   [100, 250]])
  
M = cv2.getAffineTransform(pts1, pts2)
dst = cv2.warpAffine(img, M, (cols, rows))
  
plt.subplot(121)
plt.imshow(img)
plt.title('Input')
  
plt.subplot(122)
plt.imshow(dst)
plt.title('Output')
plt.show()
  
# Displaying the image
while(1):
      
    cv2.imshow('image', img)
    if cv2.waitKey(20) & 0xFF == 27:
        break
          
cv2.destroyAllWindows()

Output:
Python OpenCV: Affine Transformation

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :