Skip to content
Related Articles
Python | Numpy numpy.ndarray.__truediv__()
• Last Updated : 06 Mar, 2019

With the help of `Numpy numpy.ndarray.__truediv__()`, we can divide a particular value that is provided as a parameter in the `ndarray.__truediv__()` method. Value will be divided to each and every element in a numpy array.

Syntax: ndarray.__truediv__(\$self, value, /)

Return: self/value

Example #1 :
In this example, we can see that each element in an array is divided with the value given as a parameter in method `ndarray.__truediv__()`. This method will work fine for positive, negative and floating point values of an array.

 `# import the important module in python``import` `numpy as np``  ` `# make an array with numpy``gfg ``=` `np.array([``1``, ``2.5``, ``3``, ``4.8``, ``5``])``  ` `# applying ndarray.__truediv__() method``print``(gfg.__truediv__(``2``))`
Output:

```[ 0.5   1.25  1.5   2.4   2.5 ]
```

Example #2 :

 `# import the important module in python``import` `numpy as np``  ` `# make an array with numpy``gfg ``=` `np.array([[``1``, ``2``, ``3``, ``4.45``, ``5``],``                ``[``6``, ``5.5``, ``4``, ``3``, ``2.62``]])``  ` `# applying ndarray.__truediv__() method``print``(gfg.__truediv__(``3``))`
Output:
```[[ 0.33333333  0.66666667  1.          1.48333333  1.66666667]
[ 2.          1.83333333  1.33333333  1.          0.87333333]]
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up