# Python | Numpy np.polyroots() method

`np.polyroots()` method is used to compute the roots of a polynomial series.Return the roots of the polynomial.

Syntax : `np.polyroots(c)`
Parameters:
c :[array_like] 1-D arrays of polynomial series coefficients.

Return : [ndarray] Array of the roots of the series. If all the roots are real, then out is also real, otherwise it is complex.

Code #1 :

 `# Python program explaining ` `# numpy.polyroots() method  ` `   `  `# importing numpy as np   ` `# and numpy.polynomial.polynomial module as geek  ` `import` `numpy as np  ` `import` `numpy.polynomial.polynomial as geek ` `   `  `# Input polynomial series coefficients ` ` `  `s ``=` `(``2``, ``4``, ``8``)  ` `    `  `# using np.polyroots() method  ` `res ``=` `geek.polyroots(s)  ` ` `  `# Resulting polynomial series coefficient ` `print` `(res)  `

Output:

```[-0.25-0.4330127j -0.25+0.4330127j]

```

Code #2 :

 `# Python program explaining ` `# numpy.polyroot() method  ` `   `  `# importing numpy as np   ` `# and numpy.polynomial.polynomial module as geek  ` `import` `numpy as np  ` `import` `numpy.polynomial.polynomial as geek ` `   `  `# polynomial series coefficients ` `s ``=` `(``1``, ``2``, ``3``, ``4``, ``5``)  ` ` `  `   `  `# using np.polyroots() method  ` `res ``=` `geek.polyroots(s)  ` ` `  `# Resulting polynomial series ` `print` `(res)  `

Output:

```[-0.53783227-0.35828469j -0.53783227+0.35828469j  0.13783227-0.67815439j
0.13783227+0.67815439j]

```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.