# Python | Numpy np.legvander3d() method

`np.legvander3d()` method is used to returns the Vandermonde matrix of degree deg and sample points x, y and z.

Syntax : `np.legvander3d(x, y, z, deg)`
Parameters:
x, y, z :[ array_like ] Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array.
deg :[int] Degree of the resulting matrix.

Return : Return the Vandermonde matrix.

Example #1 :
In this example we can see that by using `np.legvander3d()` method, we are able to get the pseudo-vandermonde matrix using this method.

 `# import numpy ` `import` `numpy as np ` `import` `numpy.polynomial.legendre as geek ` ` `  `# using np.legvander3d() method ` `ans ``=` `geek.legvander3d((``1``, ``3``, ``5``), (``2``, ``4``, ``6``), (``1``, ``2``, ``3``), [``2``, ``2``, ``2``]) ` ` `  `print``(ans) `

Output :

[[ 1.00000000e+00 1.00000000e+00 1.00000000e+00 2.00000000e+00
2.00000000e+00 2.00000000e+00 5.50000000e+00 5.50000000e+00
5.50000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00
2.00000000e+00 2.00000000e+00 2.00000000e+00 5.50000000e+00
5.50000000e+00 5.50000000e+00 1.00000000e+00 1.00000000e+00
1.00000000e+00 2.00000000e+00 2.00000000e+00 2.00000000e+00
5.50000000e+00 5.50000000e+00 5.50000000e+00]
[ 1.00000000e+00 2.00000000e+00 5.50000000e+00 4.00000000e+00
8.00000000e+00 2.20000000e+01 2.35000000e+01 4.70000000e+01
1.29250000e+02 3.00000000e+00 6.00000000e+00 1.65000000e+01
1.20000000e+01 2.40000000e+01 6.60000000e+01 7.05000000e+01
1.41000000e+02 3.87750000e+02 1.30000000e+01 2.60000000e+01
7.15000000e+01 5.20000000e+01 1.04000000e+02 2.86000000e+02
3.05500000e+02 6.11000000e+02 1.68025000e+03]
[ 1.00000000e+00 3.00000000e+00 1.30000000e+01 6.00000000e+00
1.80000000e+01 7.80000000e+01 5.35000000e+01 1.60500000e+02
6.95500000e+02 5.00000000e+00 1.50000000e+01 6.50000000e+01
3.00000000e+01 9.00000000e+01 3.90000000e+02 2.67500000e+02
8.02500000e+02 3.47750000e+03 3.70000000e+01 1.11000000e+02
4.81000000e+02 2.22000000e+02 6.66000000e+02 2.88600000e+03
1.97950000e+03 5.93850000e+03 2.57335000e+04]]

Example #2 :

 `# import numpy ` `import` `numpy as np ` `import` `numpy.polynomial.legendre as geek ` ` `  `ans ``=` `geek.legvander3d((``1``, ``2``), (``3``, ``4``), (``5``, ``6``), [``3``, ``3``, ``3``]) ` ` `  `print``(ans) `

Output :

[[ 1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
3.00000000e+00 1.50000000e+01 1.11000000e+02 9.15000000e+02
1.30000000e+01 6.50000000e+01 4.81000000e+02 3.96500000e+03
6.30000000e+01 3.15000000e+02 2.33100000e+03 1.92150000e+04
1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
3.00000000e+00 1.50000000e+01 1.11000000e+02 9.15000000e+02
1.30000000e+01 6.50000000e+01 4.81000000e+02 3.96500000e+03
6.30000000e+01 3.15000000e+02 2.33100000e+03 1.92150000e+04
1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
3.00000000e+00 1.50000000e+01 1.11000000e+02 9.15000000e+02
1.30000000e+01 6.50000000e+01 4.81000000e+02 3.96500000e+03
6.30000000e+01 3.15000000e+02 2.33100000e+03 1.92150000e+04
1.00000000e+00 5.00000000e+00 3.70000000e+01 3.05000000e+02
3.00000000e+00 1.50000000e+01 1.11000000e+02 9.15000000e+02
1.30000000e+01 6.50000000e+01 4.81000000e+02 3.96500000e+03
6.30000000e+01 3.15000000e+02 2.33100000e+03 1.92150000e+04]
[ 1.00000000e+00 6.00000000e+00 5.35000000e+01 5.31000000e+02
4.00000000e+00 2.40000000e+01 2.14000000e+02 2.12400000e+03
2.35000000e+01 1.41000000e+02 1.25725000e+03 1.24785000e+04
1.54000000e+02 9.24000000e+02 8.23900000e+03 8.17740000e+04
2.00000000e+00 1.20000000e+01 1.07000000e+02 1.06200000e+03
8.00000000e+00 4.80000000e+01 4.28000000e+02 4.24800000e+03
4.70000000e+01 2.82000000e+02 2.51450000e+03 2.49570000e+04
3.08000000e+02 1.84800000e+03 1.64780000e+04 1.63548000e+05
5.50000000e+00 3.30000000e+01 2.94250000e+02 2.92050000e+03
2.20000000e+01 1.32000000e+02 1.17700000e+03 1.16820000e+04
1.29250000e+02 7.75500000e+02 6.91487500e+03 6.86317500e+04
8.47000000e+02 5.08200000e+03 4.53145000e+04 4.49757000e+05
1.70000000e+01 1.02000000e+02 9.09500000e+02 9.02700000e+03
6.80000000e+01 4.08000000e+02 3.63800000e+03 3.61080000e+04
3.99500000e+02 2.39700000e+03 2.13732500e+04 2.12134500e+05
2.61800000e+03 1.57080000e+04 1.40063000e+05 1.39015800e+06]]

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.