Skip to content
Related Articles

Related Articles

Improve Article

Python | Numpy np.leggauss() method

  • Last Updated : 31 Dec, 2019
Geek Week

np.leggauss() Computes the sample points and weights for Gauss-legendre quadrature. These sample points and weights will correctly integrate polynomials of degree 2*deg - 1 or less over the interval [-1, 1] with the weight function f(x) = 1

Syntax : np.leggauss(deg)
Parameters:
deg :[int] Number of sample points and weights. It must be >= 1.

Return : 1.[ndarray] 1-D ndarray containing the sample points.
2.[ndarray] 1-D ndarray containing the weights.

Code #1 :




# Python program explaining
# numpy.leggauss() method 
    
# importing numpy as np  
# and numpy.polynomial.legendre module as geek 
import numpy as np 
import numpy.polynomial.legendre as geek
    
# Input degree = 2
  
degree = 2 
     
# using np.leggauss() method 
res = geek.leggauss(degree) 
  
# Resulting array of sample point and weight
print (res) 
Output:



(array([-0.57735027,  0.57735027]), array([ 1.,  1.]))

 

Code #2 :




# Python program explaining
# numpy.leggauss() method 
    
# importing numpy as np  
# and numpy.polynomial.legendre module as geek 
import numpy as np 
import numpy.polynomial.legendre as geek
    
# Input degree
degree = 3
    
# using np.leggauss() method 
res = geek.leggauss(degree) 
  
# Resulting array of sample point and weight
print (res) 
Output:
(array([-0.77459667,  0.,  0.77459667]), array([ 0.55555556,  0.88888889,  0.55555556]))

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :