Related Articles

# Python | Numpy np.hermefit() method

• Last Updated : 11 Dec, 2019

With the help of `np.hermefit()` method, we can get the least square fit of hermite series by using `np.hermefit()` method.

Syntax : `np.hermefit(x, y, deg)`
Return : Return the least square fit of given data.

Example #1 :
In this example we can see that by using `np.hermefit()` method, we are able to get the least square fit of hermite series by using this method.

 `# import numpy and hermefit``import` `numpy as np``from` `numpy.polynomial.hermite_e ``import` `hermefit`` ` `x ``=` `np.array([``1``, ``2``, ``3``, ``4``])``y ``=` `np.array([``-``1``, ``-``2``, ``-``3``, ``-``4``])``deg ``=` `3``# using np.hermefit() method``gfg ``=` `hermefit(x, y, deg)`` ` `print``(gfg)`

Output :

[6.52513495e-15 -1.00000000e+00 3.34430164e-15 -4.02985428e-16]

Example #2 :

 `# import numpy and hermefit``import` `numpy as np``from` `numpy.polynomial.hermite_e ``import` `hermefit`` ` `x ``=` `np.array([``11``, ``22``, ``33``, ``44``])``y ``=` `np.array([``1``, ``2``, ``3``, ``4``])``deg ``=` `2``# using np.hermefit() method``gfg ``=` `hermefit(x, y, deg)`` ` `print``(gfg)`

Output :

[-1.00370716e-15 9.09090909e-02 -5.85610278e-19]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up