numpy.ma.MaskedArray class
is a subclass of ndarray designed to manipulate numerical arrays with missing data. With the help of Numpy MaskedArray.__rdivmod__ we will get two arrays one is having elements that is divided by value that is provided in numpy.ma.__rdivmod__() method and second is having elements that perform mod operation with same value as provided in numpy.ma.__rdivmod__() method.
Syntax: numpy.MaskedArray.__rdivmod__
Return: Return divmod( value, self).
Example #1 :
In this example we can see that by using MaskedArray.__rdivmod__() method we get two arrays. One is with divided with value that is passed as parameter and other with mod values.
# import the important module in python import numpy as np # make an array with numpy gfg = np.ma.array([ 1 , 2 , 3 , 4 , 5 ]) # applying MaskedArray.__rdivmod__() method print (gfg.__rdivmod__( 3 )) |
(masked_array(data = [3 1 1 0 0], mask = [False False False False False], fill_value = 999999), masked_array(data = [0 1 0 3 3], mask = [False False False False False], fill_value = 999999) )
Example #2:
# import the important module in python import numpy as np # make an array with numpy gfg = np.ma.array([[ 1 , 2 , 3 , 4 , 5 ], [ 6 , 5 , 4 , 3 , 2 ]]) # applying MaskedArray.__rdivmod__() method print (gfg.__rdivmod__( 3 )) |
(masked_array(data = [[3 1 1 0 0] [0 0 0 1 1]], mask = [[False False False False False] [False False False False False]], fill_value = 999999), masked_array(data = [[0 1 0 3 3] [3 3 3 0 1]], mask = [[False False False False False] [False False False False False]], fill_value = 999999) )
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.