• Last Updated : 18 Apr, 2020

A boolean array, used to select only certain elements for an operation

 `# A mask example``import` `numpy as np``x ``=` `np.arange(``5``)``print``(x)``mask ``=` `(x > ``2``)``print``(mask)``x[mask] ``=` `-``1``print``(x)`

Output:

```[0 1 2 3 4]
[False False False  True  True]
[ 0  1  2 -1 -1]
```

`numpy.ma.MaskedArray class` is a subclass of ndarray designed to manipulate numerical arrays with missing data. With the help of Numpy MaskedArray.__mod__ every element in masked array is operated on binary operator i.e mod(%). Remember we can use any type of values in an array and value for mod is applied as the parameter in MaskedArray.__mod__().

Return: Return self%value.

Example #1 :
We can see that value that we have passed through MaskedArray.__mod__() method is used to perform the mod operation with every element of an array.

 `# import the important module in python ``import` `numpy as np ``     ` `# make an array with numpy ``gfg ``=` `np.ma.array([``1``, ``2.5``, ``3``, ``4.8``, ``5``]) ``     ` `# applying MaskedArray.__mod__() method ``print``(gfg.__mod__(``2``)) `
Output:
```[1.0 0.5 1.0 0.7999999999999998 1.0]
```

Example #2:

 `# import the important module in python ``import` `numpy as np ``     ` `# make an array with numpy ``gfg ``=` `np.ma.array([[``1``, ``2``, ``3``, ``4.45``, ``5``], ``                ``[``6``, ``5.5``, ``4``, ``3``, ``2.62``]]) ``     ` `# applying MaskedArray.__mod__() method ``print``(gfg.__mod__(``3``)) `
Output:
```[[1.0 2.0 0.0 1.4500000000000002 2.0]
[0.0 2.5 1.0 0.0 2.62]]
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

My Personal Notes arrow_drop_up