Skip to content
Related Articles

Related Articles

Improve Article

Python NLTK | nltk.tokenize.StanfordTokenizer()

  • Difficulty Level : Easy
  • Last Updated : 12 Jun, 2019

With the help of nltk.tokenize.StanfordTokenizer() method, we are able to extract the tokens from string of characters or numbers by using tokenize.StanfordTokenizer() method. It follows stanford standard for generating tokens.

Syntax : tokenize.StanfordTokenizer()
Return : Return the tokens from a string of characters or numbers.

Example #1 :
In this example we can see that by using tokenize.SExprTokenizer() method, we are able to extract the tokens from stream of characters or numbers using stanford standard.




# import StanfordTokenizer() method from nltk
from nltk.tokenize.stanford import StanfordTokenizer
     
# Create a reference variable for Class StanfordTokenizer
tk = StanfordTokenizer()
     
# Create a string input
gfg = "Geeks f o r Geeks"
     
# Use tokenize method
geek = tk.tokenize(gfg)
     
print(geek)

Output :

[‘Geeks’, ‘f’, ‘o’, ‘r’, ‘Geeks’]



Example #2 :




# import StanfordTokenizer() method from nltk
from nltk.tokenize.stanford import StanfordTokenizer
     
# Create a reference variable for Class StanfordTokenizer
tk = StanfordTokenizer()
     
# Create a string input
gfg = "This is your great author."
     
# Use tokenize method
geek = tk.tokenize(gfg)
     
print(geek)

Output :

[‘This’, ‘is’, ‘your’, ‘great’, ‘author’, ‘.’]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :