Skip to content
Related Articles

Related Articles

Improve Article

Python NLTK | nltk.tokenize.mwe()

  • Last Updated : 07 Jun, 2019

With the help of NLTK nltk.tokenize.mwe() method, we can tokenize the audio stream into multi_word expression token which helps to bind the tokens with underscore by using nltk.tokenize.mwe() method. Remember it is case sensitive.

Syntax : MWETokenizer.tokenize()
Return : Return bind tokens as one if declared before.

Example #1 :
In this example we are using MWETokenizer.tokenize() method, which used to bind the tokens which is defined before. We can also add the predefined tokens by using tokenizer.add_mwe() method.




# import MWETokenizer() method from nltk
from nltk.tokenize import MWETokenizer
   
# Create a reference variable for Class MWETokenizer
tk = MWETokenizer([('g', 'f', 'g'), ('geeks', 'for', 'geeks')])
   
# Create a string input
gfg = "geeks for geeks g f g"
   
# Use tokenize method
geek = tk.tokenize(gfg.split())
   
print(geek)

Output :

[‘geeks_for_geeks’, ‘g_f_g’]



Example #2 :




# import MWETokenizer() method from nltk
from nltk.tokenize import MWETokenizer
   
# Create a reference variable for Class MWETokenizer
tk = MWETokenizer([('g', 'f', 'g'), ('geeks', 'for', 'geeks')])
tk.add_mwe(('who', 'are', 'you'))
   
# Create a string input
gfg = "who are you at geeks for geeks"
   
# Use tokenize method
geek = tk.tokenize(gfg.split())
   
print(geek)

Output :

[‘who_are_you’, ‘at’, ‘geeks_for_geeks’]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :