Related Articles

Related Articles

Python | Multiply 2d numpy array corresponding to 1d array
  • Last Updated : 15 Mar, 2019

Given a two numpy arrays, the task is to multiply 2d numpy array with 1d numpy array each row corresponding to one element in numpy. Let’s discuss a few methods for a given task.

Method #1: Using np.newaxis()

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python code to demonstrate
# multiplication of 2d array
# with 1d array
  
import numpy as np
  
ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]])
ini_array2 = np.array([0, 2, 3])
  
# printing initial arrays
print("initial array", str(ini_array1))
  
# Multiplying arrays
result = ini_array1 * ini_array2[:, np.newaxis]
  
# printing result
print("New resulting array: ", result)

chevron_right


Output:

initial array [[1 2 3]
 [2 4 5]
 [1 2 3]]
New resulting array:  [[ 0  0  0]
 [ 4  8 10]
 [ 3  6  9]]

 
Method #2: Using axis as none

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python code to demonstrate
# multiplication of 2d array
# with 1d array
  
import numpy as np
  
ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]])
ini_array2 = np.array([0, 2, 3])
  
# printing initial arrays
print("initial array", str(ini_array1))
  
# Multiplying arrays
result = ini_array1 * ini_array2[:, None]
  
# printing result
print("New resulting array: ", result)

chevron_right


Output:



initial array [[1 2 3]
 [2 4 5]
 [1 2 3]]
New resulting array:  [[ 0  0  0]
 [ 4  8 10]
 [ 3  6  9]]

 
Method #3: Using transpose()

filter_none

edit
close

play_arrow

link
brightness_4
code

# python code to demonstrate
# multiplication of 2d array
# with 1d array
  
import numpy as np
  
ini_array1 = np.array([[1, 2, 3], [2, 4, 5], [1, 2, 3]])
ini_array2 = np.array([0, 2, 3])
  
# printing initial arrays
print("initial array", str(ini_array1))
  
# Multiplying arrays
result = (ini_array1.T * ini_array2).T
  
# printing result
print("New resulting array: ", result)

chevron_right


Output:

initial array [[1 2 3]
 [2 4 5]
 [1 2 3]]
New resulting array:  [[ 0  0  0]
 [ 4  8 10]
 [ 3  6  9]]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :