Related Articles

# Python – math.acosh() function

• Last Updated : 28 May, 2020

Math module contains a number of functions which is used for mathematical operations. The math.acosh() function returns the hyperbolic arc cosine value of a number. The value passed in this function should be greater than or equal to 1.

Syntax: math.acosh(x)

Parameter:This method accepts only single parameters.

• x :This parameter is the value to be passed to acosh()

Returns:This function returns the hyperbolic arc cosine value of a number.

Below examples illustrate the use of above function:

Example 1:

 `# Python code to implement``# the acosh()function``       ` `# importing "math"``# for mathematical operations  ``import` `math  ``      ` `a ``=` `math.pi ``/` `6``       ` `# Return the hyperbolic arc cosine value of numbers ``print` `(math.acosh(``7``))``print` `(math.acosh(``56``))``print` `(math.acosh(``2.45``))``print` `(math.acosh(``1``))`

Output:

```2.6339157938496336
4.718419142372879
1.5447131178707394
0.0
```

Example 2:

 `# Python code implementation of ``# the acosh() function``import` `math ``import` `numpy as np ``import` `matplotlib.pyplot as plt  ``    ` `in_array ``=` `np.linspace(``1``, np.pi``*``*``2``, ``30``) ``    ` `out_array ``=` `[] ``    ` `for` `i ``in` `range``(``len``(in_array)): ``    ``out_array.append(math.acosh(in_array[i])) ``    ``i ``+``=` `1``     ` `print``(``"Input_Array : \n"``, in_array)  ``print``(``"\nOutput_Array : \n"``, out_array)  ``  ` `  ` `plt.plot(in_array, out_array, ``"go-"``)  ``plt.title(``"math.acosh()"``)  ``plt.xlabel(``"X"``)  ``plt.ylabel(``"Y"``)  ``plt.show() `

Output:

```Input_Array :
[1.         1.30584843 1.61169686 1.91754528 2.22339371 2.52924214
2.83509057 3.14093899 3.44678742 3.75263585 4.05848428 4.3643327
4.67018113 4.97602956 5.28187799 5.58772641 5.89357484 6.19942327
6.5052717  6.81112012 7.11696855 7.42281698 7.72866541 8.03451384
8.34036226 8.64621069 8.95205912 9.25790755 9.56375597 9.8696044 ]

Output_Array :
[0.0, 0.7634351653684978, 1.0562772501126303, 1.2679873925813194, 1.4372757745859863,
1.5794735761470122, 1.7025573669627803, 1.8113067645313763, 1.9088495232436826,
1.997360544554533, 2.07842113836573, 2.1532211217708626, 2.2226804635542514,
2.287526464855001, 2.348344844358015, 2.405614746886384, 2.4597334430301796,
2.51103419200721, 2.559799438447933, 2.6062707446710016, 2.6506563890658725,
2.693137263795659, 2.7338715120762482, 2.7729982170653664, 2.8106403673544613,
2.8469072638299315, 2.8818964902724367, 2.9156955397451294, 2.9483831668303044,
2.9800305196125625]
```

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up