scipy.stats.levy() is a levy continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.
Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).
Results : levy continuous random variable
Code #1 : Creating levy continuous random variable
from scipy.stats import levy
numargs = levy.numargs
a, b = 4.32 , 3.18
rv = levy(a, b)
print ( "RV : \n" , rv)
|
Output :
RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D661FF48
Code #2 : levy continuous variates and probability distribution
import numpy as np
quantile = np.arange ( 0.01 , 1 , 0.1 )
R = levy.rvs(a, b)
print ( "Random Variates : \n" , R)
R = levy.pdf(a, b, quantile)
print ( "\nProbability Distribution : \n" , R)
|
Output :
Random Variates :
10.146582883442196
Probability Distribution :
[0.03263232 0.10358487 0.13698141 0.15928865 0.17532664 0.18715139
0.19589569 0.2022745 0.20677902 0.20976675]
Code #3 : Graphical Representation.
import numpy as np
import matplotlib.pyplot as plt
distribution = np.linspace( 0 , np.minimum(rv.dist.b, 3 ))
print ( "Distribution : \n" , distribution)
plot = plt.plot(distribution, rv.pdf(distribution))
|
Output :
Distribution :
[0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939
0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327
1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408
2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
2.93877551 3. ]

Code #4 : Varying Positional Arguments
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace( 0 , 5 , 100 )
y1 = levy .pdf(x, 1 , 3 )
y2 = levy .pdf(x, 1 , 4 )
plt.plot(x, y1, "*" , x, y2, "r--" )
|
Output :

Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
10 Jan, 2020
Like Article
Save Article