scipy.stats.johnsonsu() is a Johnson SU continuous random variable that is defined with a standard format and some shape parameters to complete its specification.
Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).
Results : Johnson SU continuous random variable
Code #1 : Creating Johnson SU continuous random variable
from scipy.stats import johnsonsu
numargs = johnsonsu.numargs
a, b = 4.32 , 3.18
rv = johnsonsu(a, b)
print ( "RV : \n" , rv)
|
Output :
RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D4E91708
Code #2 : Johnson SU continuous variates and probability distribution
import numpy as np
quantile = np.arange ( 0.01 , 1 , 0.1 )
R = johnsonsu.rvs(a, b, scale = 2 , size = 10 )
print ( "Random Variates : \n" , R)
R = johnsonsu.pdf(a, b, quantile, loc = 0 , scale = 1 )
print ( "\nProbability Distribution : \n" , R)
|
Output :
Random Variates :
[-6.33841843 -5.35469028 -5.36145351 -4.4504208 -1.91574847 -5.01633416
-5.37699657 -4.15794134 -4.90450547 -2.93846617]
Probability Distribution :
[5.34745702e-06 2.86846536e-05 2.54767528e-05 1.66921608e-05
9.34800722e-06 4.69729578e-06 2.16525150e-06 9.26607636e-07
3.70800055e-07 1.39402846e-07]
Code #3 : Graphical Representation.
import numpy as np
import matplotlib.pyplot as plt
distribution = np.linspace( 0 , np.minimum(rv.dist.b, 3 ))
print ( "Distribution : \n" , distribution)
plot = plt.plot(distribution, rv.pdf(distribution))
|
Output :
Distribution :
[0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939
0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327
1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408
2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
2.93877551 3. ]

Code #4 : Varying Positional Arguments
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace( 0 , 5 , 100 )
y1 = johnsonsu .pdf(x, 1 , 3 )
y2 = johnsonsu .pdf(x, 1 , 4 )
plt.plot(x, y1, "*" , x, y2, "r--" )
|
Output :
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
10 Jan, 2020
Like Article
Save Article