Open In App
Related Articles

Python – Johnson SU Distribution in Statistics

Improve Article
Improve
Save Article
Save
Like Article
Like

scipy.stats.johnsonsu() is a Johnson SU continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Johnson SU continuous random variable

Code #1 : Creating Johnson SU continuous random variable




# importing library
  
from scipy.stats import johnsonsu  
    
numargs = johnsonsu.numargs 
a, b = 4.32, 3.18
rv = johnsonsu(a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D4E91708


Code #2 : Johnson SU continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = johnsonsu.rvs(a, b, scale = 2, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
R = johnsonsu.pdf(a, b, quantile, loc = 0, scale = 1
print ("\nProbability Distribution : \n", R)  


Output :

Random Variates : 
 [-6.33841843 -5.35469028 -5.36145351 -4.4504208  -1.91574847 -5.01633416
 -5.37699657 -4.15794134 -4.90450547 -2.93846617]

Probability Distribution : 
 [5.34745702e-06 2.86846536e-05 2.54767528e-05 1.66921608e-05
 9.34800722e-06 4.69729578e-06 2.16525150e-06 9.26607636e-07
 3.70800055e-07 1.39402846e-07]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]
 

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = johnsonsu .pdf(x, 1, 3
y2 = johnsonsu .pdf(x, 1, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :


Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Last Updated : 10 Jan, 2020
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials