Skip to content
Related Articles

Related Articles

Python – Inverse Gaussian Distribution in Statistics
  • Last Updated : 10 Jan, 2020

scipy.stats.invgauss() is an inverted gauss continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

a : shape parameter
c : special case of gengauss. Default equals to c = -1

Code #1 : Creating Inverse Gaussian continuous random variable




# importing library
from scipy.stats import invgauss   
     
numargs = invgauss.numargs 
[a, b] = [0.7, 0.4] * numargs 
rv = invgauss (a, b) 
     
print ("RV : \n", rv)  

Output :



RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x1a220d7bd0

Code #2 : Inverse Gaussian continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1
      
# Random Variates 
R = invgauss.ppf(0.01, a) 
print ("Random Variates : \n", R) 
     
# PDF 
R = invgauss.pdf(invgauss.ppf(0.01, a), a) 
print ("\nProbability Distribution : \n", R) 

Output :

Random Variates : 
 0.25801533159920903

Probability Distribution : 
 0.15984442779701688

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 

Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = invgauss .pdf(x, 1, 3
y2 = invgauss .pdf(x, 1, 4
plt.plot(x, y1, "*", x, y2, "r--"

Output :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :