Skip to content
Related Articles

Related Articles

Improve Article

Python – evaluate() function in Wand

  • Last Updated : 17 May, 2020

In evaluate() function pixel channels can be manipulated by applying an arithmetic, relational, or logical expression.

Syntax :

wand.image.evaluate(operator, value, channel)

Parameters :

ParameterInput TypeDescription
operatorbasestringType of operation to calculate.
valuenumbers.RealNumber to calculate with operator
channelbasestringOptional channel to apply operation on.

Following are the list of EVALUATE_OPS in Wand:

EVALUATE_OPSDescription
‘undefined’it is the defaul EVALUATE_OPS.
‘abs’create an abstract evaluation.
‘add’add evaluation.
‘addmodulus’add modulus evaluation.
‘and’and evaluation.
‘cosine’evaluate from cosine function.
‘gaussiannoise’Add gaussian noise evaluation
‘impulsenoise’Add impulse noise evaluation
‘laplaciannoise’Add laplace noise evaluation
‘leftshift’bitwise leftshift
‘max’max evaluation
‘mean’mean evaluation added.
‘median’median evaluation added.
‘multiplicativenoise’Add multiplicative noise evaluation
‘multiply’multiply image evaluation
‘or’or evaluation
‘poissonnoise’Add poisson noise evaluation
‘pow’Add powe evaluation
‘rightshift’bitwise right shift
‘set’Add set evaluation
‘sine’Add sine function evaluation
‘threshold’Add threshold evaluation with particular threshold point.
‘thresholdblack’Add evaluation while threshold is black.
‘thresholdwhite’Add evaluation while threshold is white.
‘uniformnoise’Add uniform noise evaluation

Source Image:



Code Example 1:




# Import Image from wand.image module
from wand.image import Image
  
# Read image using Image function
with Image(filename ="koala.jpeg") as img:
    img.evaluate(operator ='rightshift', value = 1, channel ='blue')
    img.save(filename ="kl-enhanced.jpeg")

Output Image:

Code Example 2:




# Import Image from wand.image module
from wand.image import Image
  
# Read image using Image function
with Image(filename ="koala.jpeg") as img:
    img.evaluate(operator ='leftshift', value = 1, channel ='red')
    img.save(filename ="kl-enhanced2.jpeg")

Output Image:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :