Skip to content
Related Articles
Open in App
Not now

Related Articles

Python – Elements frequency count in multiple lists

Improve Article
Save Article
  • Last Updated : 20 Jan, 2023
Improve Article
Save Article

Sometimes while working with Python lists we can have a problem in which we need to extract the frequency of elements in list. But this can be added work if we have more than 1 list we work on. Let’s discuss certain ways in which this task can be performed. 

Method #1: Using dictionary comprehension + set() + count() This is one of the way in which this task can be performed. In this, we perform the task of counting using count() and set() and the extension of logic is done using dictionary comprehension. 

Python3




# Python3 code to demonstrate
# Elements frequency count in multiple lists
# using set() + count() + dictionary comprehension
 
# Initializing lists
test_list1 = [1, 3, 2, 4, 5, 1, 2]
test_list2 = [4, 1, 4, 3, 4, 2, 4]
test_list3 = [1, 4, 5, 3, 4, 5, 4]
 
# printing original lists
print("The original list 1 is : " + str(test_list1))
print("The original list 2 is : " + str(test_list2))
print("The original list 3 is : " + str(test_list3))
 
# Elements frequency count in multiple lists
# using set() + count() + dictionary comprehension
res = {idx : [test_list1.count(idx), test_list2.count(idx), test_list3.count(idx)]
    for idx in set(test_list1 + test_list2 + test_list3)}
             
# printing result
print ("The frequency of each element is : " + str(res))

Output

The original list 1 is : [1, 3, 2, 4, 5, 1, 2]
The original list 2 is : [4, 1, 4, 3, 4, 2, 4]
The original list 3 is : [1, 4, 5, 3, 4, 5, 4]
The frequency of each element is : {1: [2, 1, 1], 2: [2, 1, 0], 3: [1, 1, 1], 4: [1, 4, 3], 5: [1, 0, 2]}

Time Complexity: O(n^2) and the space complexity is O(n) where n is the total number of elements in all the lists.
Auxiliary Space: O(n), where n is the number of elements in the input lists. The res dictionary and the set created for storing the unique elements of the input lists use O(n) space.

Method #2: Using Counter() + map() + dictionary comprehension The combination of above functionalities can be used to solve this problem. In this, the task of finding the frequency is done using Counter() and map(). 

Python3




# Python3 code to demonstrate
# Elements frequency count in multiple lists
# using map() + Counter() + dictionary comprehension
from collections import Counter
 
# Initializing lists
test_list1 = [1, 3, 2, 4, 5, 1, 2]
test_list2 = [4, 1, 4, 3, 4, 2, 4]
test_list3 = [1, 4, 5, 3, 4, 5, 4]
 
# printing original lists
print("The original list 1 is : " + str(test_list1))
print("The original list 2 is : " + str(test_list2))
print("The original list 3 is : " + str(test_list3))
 
# Elements frequency count in multiple lists
# using map() + Counter() + dictionary comprehension
freq = list(map(Counter, (test_list1, test_list2, test_list3)))
res = {ele: [cnt[ele] for cnt in freq] for ele in {ele for cnt in freq for ele in cnt}}
             
# printing result
print ("The frequency of each element is : " + str(res))

Output

The original list 1 is : [1, 3, 2, 4, 5, 1, 2]
The original list 2 is : [4, 1, 4, 3, 4, 2, 4]
The original list 3 is : [1, 4, 5, 3, 4, 5, 4]
The frequency of each element is : {1: [2, 1, 1], 2: [2, 1, 0], 3: [1, 1, 1], 4: [1, 4, 3], 5: [1, 0, 2]}

Method #3: Using extend(),list(),set() and count() methods

Python3




# Python3 code to demonstrate
# Elements frequency count in multiple lists
 
# Initializing lists
test_list1 = [1, 3, 2, 4, 5, 1, 2]
test_list2 = [4, 1, 4, 3, 4, 2, 4]
test_list3 = [1, 4, 5, 3, 4, 5, 4]
 
# printing original lists
print("The original list 1 is : " + str(test_list1))
print("The original list 2 is : " + str(test_list2))
print("The original list 3 is : " + str(test_list3))
 
# Elements frequency count in multiple lists
x=[]
res=dict()
x.extend(test_list1)
x.extend(test_list2)
x.extend(test_list3)
x=list(set(x))
for i in x:
    a=[]
    a.append(test_list1.count(i))
    a.append(test_list2.count(i))
    a.append(test_list3.count(i))
    res[i]=a
 
# printing result
print ("The frequency of each element is : " + str(res))

Output

The original list 1 is : [1, 3, 2, 4, 5, 1, 2]
The original list 2 is : [4, 1, 4, 3, 4, 2, 4]
The original list 3 is : [1, 4, 5, 3, 4, 5, 4]
The frequency of each element is : {1: [2, 1, 1], 2: [2, 1, 0], 3: [1, 1, 1], 4: [1, 4, 3], 5: [1, 0, 2]}

Time Complexity : O(N)
Auxiliary Space : O(N)

Method #4: Using dictionary comprehension + set() + operator.countOf() This is one of the way in which this task can be performed. In this, we perform the task of counting using operator.countOf() and set() and the extension of logic is done using dictionary comprehension. 

Python3




# Python3 code to demonstrate
# Elements frequency count in multiple lists
# using set() + operator.countOf() + dictionary comprehension
import operator as op
# Initializing lists
test_list1 = [1, 3, 2, 4, 5, 1, 2]
test_list2 = [4, 1, 4, 3, 4, 2, 4]
test_list3 = [1, 4, 5, 3, 4, 5, 4]
 
# printing original lists
print("The original list 1 is : " + str(test_list1))
print("The original list 2 is : " + str(test_list2))
print("The original list 3 is : " + str(test_list3))
 
# Elements frequency count in multiple lists
# using set() + operator.countOf() + dictionary comprehension
res = {idx : [op.countOf(test_list1,idx), op.countOf(test_list2,idx), op.countOf(test_list3,idx)]
    for idx in set(test_list1 + test_list2 + test_list3)}
             
# printing result
print ("The frequency of each element is : " + str(res))

Output

The original list 1 is : [1, 3, 2, 4, 5, 1, 2]
The original list 2 is : [4, 1, 4, 3, 4, 2, 4]
The original list 3 is : [1, 4, 5, 3, 4, 5, 4]
The frequency of each element is : {1: [2, 1, 1], 2: [2, 1, 0], 3: [1, 1, 1], 4: [1, 4, 3], 5: [1, 0, 2]}

Time Complexity: O(n)
Auxiliary Space: O(n)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!