Python – Discrete Hyper-geometric Distribution in Statistics

scipy.stats.hypergeom() is a hypergeometric discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution.

Parameters :

x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : hypergeometric discrete random variable

Code #1 : Creating hypergeometric discrete random variable



filter_none

edit
close

play_arrow

link
brightness_4
code

# importing library
  
from scipy.stats import hypergeom 
    
numargs = hypergeom .numargs 
a, b = 0.2, 0.8
rv = hypergeom (a, b) 
    
print ("RV : \n", rv)  

chevron_right


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C0DF048

Code #2 : hypergeometric discrete variates and probability distribution

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = hypergeom .pmf(a, b, c, 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(hypergeom.ppf(0.01, a, b, c),
                hypergeom.ppf(0.99, a, b, c), 10)
R = hypergeom.ppf(x, 1, 3, 3)
print ("\nProbability Distribution : \n", R) 

chevron_right


Output :

Random Variates : 
 nan

Probability Distribution : 
 [nan nan nan nan nan nan nan nan nan nan]

Code #3 : Graphical Representation.

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 

chevron_right


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        
  

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.