Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Python – Discrete Geometric Distribution in Statistics

  • Last Updated : 01 Jan, 2020

scipy.stats.geom() is a Geometric discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution.

Parameters :

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).



Results : Geometric discrete random variable

Code #1 : Creating Geometric discrete random variable




# importing library
  
from scipy.stats import geom 
    
numargs = geom .numargs 
a, b = 0.2, 0.8
rv = geom (a, b) 
    
print ("RV : \n", rv)  

Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C37A988

Code #2 : Geometric discrete variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = geom .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(geom.ppf(0.01, a, b),
                geom.ppf(0.99, a, b), 10)
R = geom.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 

Output :

Random Variates : 
 [5 1 1 2 7 9 3 2 1 3]

Probability Distribution : 
 [nan nan nan nan nan nan nan nan nan nan]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.ppf(distribution)) 

Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  


Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = geom.ppf(x, a, b) 
y2 = geom.pmf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"

Output :




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!