Python | Data Comparison and Selection in Pandas

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages, and makes importing and analyzing data much easier.

The most important thing in Data Analysis is comparing values and selecting data accordingly. The “==” operator works for multiple values in a Pandas Data frame too. Following two examples will show how to compare and select data from a Pandas Data frame.

To download the CSV file used, Click Here.

Example #1: Comparing Data
In the following example, a data frame is made from a csv file. In the Gender Column, there are only 3 types of values (“Male”, “Female” or NaN). Every row of Gender column is compared to “Male” and a boolean series is returned after that.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas package
import pandas as pd
  
# making data frame from csv file
data = pd.read_csv("employees.csv")
  
# storing boolean series in new
new = data["Gender"] == "Male"
  
# inserting new series in data frame
data["New"]= new
  
# display
data

chevron_right


Output:
As show in the output image, for Gender= “Male”, the value in New Column is True and for “Female” and NaN values it is False.


 
Example #2: Selecting Data
In the following example, the boolean series is passed to the data and only Rows having Gender=”Male” are returned.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing pandas package
import pandas as pd
  
# making data frame from csv file
data = pd.read_csv("employees.csv")
  
# storing boolean series in new
new = data["Gender"] != "Female"
  
# inserting new series in data frame
data["New"]= new
  
# display
data[new]
  
# OR 
# data[data["Gender"]=="Male"]
# Both are the same

chevron_right


Output:
As shown in the output image, Data frame having Gender=”Male” is returned.

Note: For NaN values, the boolean value is False.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.