Open In App
Related Articles

Data analysis using Pandas

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Pandas are the most popular python library that is used for data analysis. It provides highly optimized performance with back-end source code purely written in C or Python

We can analyze data in Pandas with:

Pandas Series

Series in Pandas is one dimensional(1-D) array defined in pandas that can be used to store any data type.

Creating Pandas Series

Python3

# Program to create series
 
# Import Panda Library
import pandas as pd
 
# Create series with Data, and Index
a = pd.Series(Data, index=Index)

                    

Here, Data can be:

  1. A Scalar value which can be integerValue, string
  2. A Python Dictionary which can be Key, Value pair
  3. A Ndarray

Note: Index by default is from 0, 1, 2, …(n-1) where n is the length of data.  

Create Series from List

 Creating series with predefined index values.

Python3

# Numeric data
Data = [1, 3, 4, 5, 6, 2, 9]
 
# Creating series with default index values
s = pd.Series(Data)
 
# predefined index values
Index = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
 
si = pd.Series(Data, Index)

                    

Output:

Create Series from List

 

 

Create Pandas Series from Dictionary

Program to Create Pandas series from Dictionary.

Python3

dictionary = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
 
# Creating series of Dictionary type
sd = pd.Series(dictionary)

                    

Output:

Create Pandas Series from Dictionary

Dictionary type data

Convert an Array to Pandas Series

Program to Create ndarray series.

Python3

# Defining 2darray
Data = [[2, 3, 4], [5, 6, 7]]
 
# Creating series of 2darray
snd = pd.Series(Data)

                    

Output:

Convert an Array to Pandas Series

Data as Ndarray

Pandas DataFrames

The DataFrames in Pandas is a two-dimensional (2-D) data structure defined in pandas which consists of rows and columns.

Creating a Pandas DataFrame

Python3

# Program to Create DataFrame
 
# Import Library
import pandas as pd
 
# Create DataFrame with Data
a = pd.DataFrame(Data)

                    

Here, Data can be:

  1. One or more dictionaries
  2. One or more Series
  3. 2D-numpy Ndarray

Create a Pandas DataFrame from multiple Dictionary

Program to Create a Dataframe with two dictionaries.

Python3

# Define Dictionary 1
dict1 = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
 
# Define Dictionary 2
dict2 = {'a': 5, 'b': 6, 'c': 7, 'd': 8, 'e': 9}
 
# Define Data with dict1 and dict2
Data = {'first': dict1, 'second': dict2}
 
# Create DataFrame
df = pd.DataFrame(Data)
 
df

                    

Output:

Create a Pandas DataFrame from multiple Dictionary

DataFrame with two dictionaries

Convert list of dictionaries to a Pandas DataFrame

Here, we are taking three dictionaries and with the help of from_dict() we convert them into Pandas DataFrame.

Python3

import pandas as pd
data_c = [
 {'A': 5, 'B': 0, 'C': 3, 'D': 3},
 {'A': 7, 'B': 9, 'C': 3, 'D': 5},
 {'A': 2, 'B': 4, 'C': 7, 'D': 6}]
 
pd.DataFrame.from_dict(data_c, orient='columns')

                    

Output:

    A    B    C    D
0    5    0    3    3
1    7    9    3    5
2    2    4    7    6

Create DataFrame from Multiple Series

Program to create a dataframe of three Series.

Python3

import pandas as pd
 
# Define series 1
s1 = pd.Series([1, 3, 4, 5, 6, 2, 9])
 
# Define series 2   
s2 = pd.Series([1.1, 3.5, 4.7, 5.8, 2.9, 9.3])
 
# Define series 3
s3 = pd.Series(['a', 'b', 'c', 'd', 'e'])   
 
# Define Data
Data ={'first':s1, 'second':s2, 'third':s3}
 
# Create DataFrame
dfseries = pd.DataFrame(Data)           
 
dfseries

                    

Output:

Create DataFrame from Multiple Series

DataFrame with three series

Convert a Array to Pandas Dataframe

One constraint has to be maintained while creating a DataFrame of 2D arrays – The dimensions of the 2D array must be the same.

Python3

# Program to create DataFrame from 2D array
 
# Import Library
import pandas as pd
 
# Define 2d array 1
d1 =[[2, 3, 4], [5, 6, 7]]
 
# Define 2d array 2
d2 =[[2, 4, 8], [1, 3, 9]]
 
# Define Data
Data ={'first': d1, 'second': d2}
 
# Create DataFrame
df2d = pd.DataFrame(Data)   
 
df2d

                    

Output:

Convert a Array to Pandas Dataframe

DataFrame with 2d ndarray



Last Updated : 31 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads