# Python – All Possible unique K size combinations till N

Sometimes, while working with Python domain, we can have a problem in which we need to produce various combination of elements. This can be K sized unique combinations till N. This problem can have application in data domains and school programming. Let’s discuss certain ways in which this task can be performed.

Input : N = 2, K = 3
Output : [(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)]

Input : N = 4, K = 2
Output : [(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]

Method #1 : Using `product() + setdefault()` + loop
The combination of above functions offers an approach to this problem. In this, we use product to perform all combinations and eliminate duplicates using setdefault() and loop by brute force approach.

 `# Python3 code to demonstrate working of  ` `# All Possible unique K size combinations till N ` `# Using product() + setdefault() + loop ` `from` `itertools ``import` `product ` ` `  `# initializing N ` `N ``=` `4` ` `  `# Initialize K ` `K ``=` `3` ` `  `# All Possible unique K size combinations till N ` `# Using product() + setdefault() + loop ` `temp ``=` `list``(product(``range``(N), repeat ``=` `K)) ` `res ``=` `{} ` `for` `tup ``in` `temp: ` `    ``key ``=` `tuple``(``sorted``(tup)) ` `    ``res.setdefault(key, []).append(tup) ` `res ``=` `list``(res.keys()) ` ` `  `# printing result  ` `print``(``"The unique combinations : "` `+` `str``(res))  `

Output :

The unique combinations : [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 2, 2), (0, 2, 3), (0, 3, 3), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 3), (2, 2, 2), (2, 2, 3), (2, 3, 3), (3, 3, 3)]

Method #2 : Using `combinations_with_replacement()`
This offers an alternative method to solve this problem. This function performs internally, all that is required to get to solution.

 `# Python3 code to demonstrate working of  ` `# All Possible unique K size combinations till N ` `# Using combinations_with_replacement() ` `from` `itertools ``import` `product, combinations_with_replacement ` ` `  `# initializing N ` `N ``=` `4` ` `  `# Initialize K ` `K ``=` `3` ` `  `# All Possible unique K size combinations till N ` `# Using combinations_with_replacement() ` `res ``=` `list``(combinations_with_replacement(``range``(N), K)) ` ` `  `# printing result  ` `print``(``"The unique combinations : "` `+` `str``(res))  `

Output :

The unique combinations : [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 1), (0, 1, 2), (0, 1, 3), (0, 2, 2), (0, 2, 3), (0, 3, 3), (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3), (1, 3, 3), (2, 2, 2), (2, 2, 3), (2, 3, 3), (3, 3, 3)]

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.