Pythagorean Quadruple
Given four points, check whether they form Pythagorean Quadruple.
It is defined as a tuple of integers a, b, c, d such that . They are basically the solutions of Diophantine Equations. In the geometric interpretation it represents a cuboid with integer side lengths |a|, |b|, |c| and whose space diagonal is |d| .
The cuboids sides shown here are examples of pythagorean quadruples.
It is primitive when their greatest common divisor is 1. Every Pythagorean quadruple is an integer multiple of a primitive quadruple. We can generate the set of primitive pythagorean quadruples for which a is odd can be generated by formula :
a = m2 + n2 – p2 – q2,
b = 2(mq + np),
c = 2(nq – mp),
d = m2 + n2 + p2 + q2
where m, n, p, q are non-negative integers with greatest common divisor 1 such that m + n + p + q are odd. Thus, all primitive Pythagorean quadruples are characterized by Lebesgue’s identity.
(m2 + n2 + p2 + q2)2 = (2mq + 2nq)2 + 2(nq – mp)2 + (m2 + n2 – p2 – q2)m2 + n2 – p2 – q2
C++
// C++ code to detect Pythagorean Quadruples. #include <bits/stdc++.h> using namespace std; // function for checking bool pythagorean_quadruple( int a, int b, int c, int d) { int sum = a * a + b * b + c * c; if (d * d == sum) return true ; else return false ; } // Driver Code int main() { int a = 1, b = 2, c = 2, d = 3; if (pythagorean_quadruple(a, b, c, d)) cout << "Yes" << endl; else cout << "No" << endl; } |
Java
// Java code to detect Pythagorean Quadruples. import java.io.*; import java.util.*; class GFG { // function for checking static Boolean pythagorean_quadruple( int a, int b, int c, int d) { int sum = a * a + b * b + c * c; if (d * d == sum) return true ; else return false ; } // Driver function public static void main (String[] args) { int a = 1 , b = 2 , c = 2 , d = 3 ; if (pythagorean_quadruple(a, b, c, d)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by Gitanjali. |
Python3
# Python code to detect # Pythagorean Quadruples. import math # function for checking def pythagorean_quadruple(a,b, c, d): sum = a * a + b * b + c * c; if (d * d = = sum ): return True else : return False #driver code a = 1 b = 2 c = 2 d = 3 if (pythagorean_quadruple(a, b, c, d)): print ( "Yes" ) else : print ( "No" ) # This code is contributed # by Gitanjali. |
C#
// C# code to detect // Pythagorean Quadruples. using System; class GFG { // function for checking static Boolean pythagorean_quadruple( int a, int b, int c, int d) { int sum = a * a + b * b + c * c; if (d * d == sum) return true ; else return false ; } // Driver function public static void Main () { int a = 1, b = 2, c = 2, d = 3; if (pythagorean_quadruple(a, b, c, d)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by vt_M. |
PHP
<?php // php code to detect Pythagorean Quadruples. // function for checking function pythagorean_quadruple( $a , $b , $c , $d ) { $sum = $a * $a + $b * $b + $c * $c ; if ( $d * $d == $sum ) return true; else return false; } // Driver Code $a = 1; $b = 2; $c = 2; $d = 3; if (pythagorean_quadruple( $a , $b , $c , $d )) echo "Yes" ; else echo "No" ; // This code is contributed by anuj_67. ?> |
Javascript
<script> // JavaScript program to detect Pythagorean Quadruples. // function for checking function pythagorean_quadruple(a, b, c, d) { let sum = a * a + b * b + c * c; if (d * d == sum) return true ; else return false ; } // Driver code let a = 1, b = 2, c = 2, d = 3; if (pythagorean_quadruple(a, b, c, d)) document.write( "Yes" ); else document.write( "No" ); </script> |
Output:
Yes
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...