Puzzle  Dividing a Square into N smaller squares
Puzzle: Find all values of N for which one can dissect a square into N smaller squares, and outline an algorithm for doing such a dissection.
Solution: The basic point to observe is a square has 4 rightangles. So, to divide it into smaller squares each of its rightangle must fall into another square, as more than one rightangle together will result in a nonsquare figures.
Now, consider the following cases:
 When N = 2, 3, or 5: No such division is possible, as it violates the above given condition and nonshaped figures are obtained.
 When N = 4: This is the easiest case. Just divide the square horizontally and vertically, from the centre. The resulting figure will have 4 squares.

When N is even and greater than 4: This case can be generalised by considering N = 2k and forming 2k – 1, equal squares along adjacent sides of the given square. However, the side length of each smaller square should be equal to 1/k of the length of the given square.
For example: Consider the example when N = 6 as shown in the figure, here we have formed 5 squares along the top and rightside, each of side (1/3)rd of the side of the original square. Also, a square of side (2/k) is left, resulting in a total of 6 squares.

Case N is odd and greater than 5: This case builds upon the solution for even values of N. If N is odd, we can break it as N = 2k + 1, which further can be written as N = 2(k – 1) + 3. Now, we can first form 2(k – 1) squares using the above approach, and then divide, on of the obtained squares, into four smaller squares, which will increase the overall square count by 3.
For example: Consider the example when N = 9 as shown. Here, we first form 6 squares, and then divided the topleft square into 4 smaller squares, to get total 9 squares.
GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details
Recommended Posts:
 Square pyramidal number (Sum of Squares)
 Find the number of squares inside the given square grid
 Find the side of the squares which are lined in a row, and distance between the centers of first and last square is given
 Puzzle  Program to find number of squares in a chessboard
 Puzzle  Can a Knight reach bottom from top by visiting all squares
 Puzzle  (Square and Right angles, Up the Ladder)
 Previous perfect square and cube number smaller than number N
 Puzzle  Divide square land among 4 sons
 Puzzle  Find The Probability of Distance in a Square
 Puzzle  Divide a Square into 5 parts such that 4 parts among them are equal
 Smallest N digit number whose sum of square of digits is a Perfect Square
 Check if a number is perfect square without finding square root
 Maximum value with the choice of either dividing or considering as it is
 Dividing the rectangle into n rightangled triangles
 Maximum sum after repeatedly dividing N by a divisor
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.