Open In App

Properties of Definite Integrals

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Share
Report issue
Report

An integral that has a limit is known as a definite integral. It has an upper limit and a lower limit. It is represented as 

[Tex]\int_{a}^{b}[/Tex]f(x) = F(b) − F(a)

There are many properties regarding definite integral. We will discuss each property one by one with proof.

Properties of Definite Integrals

Various properties of the definite integrals are added below,

Property 1: [Tex]\int_{a}^{b}[/Tex] f(x) dx = [Tex]\int_{a}^{b}[/Tex] f(y) dy

Proof:

[Tex]\int_{a}^{b}     [/Tex] f(x) dx…….(1)

Suppose x = y

           dx = dy

Putting this in equation (1)

[Tex]\int_{a}^{b}[/Tex] f(y) dy

Property 2: [Tex]\int_{a}^{b}     [/Tex] f(x) dx = –[Tex]\int_{b}^{a}     [/Tex] f(x) dx

Proof:

[Tex]\int_{a}^{b}     [/Tex] f(x) dx = F(b) – F(a)……..(1)

[Tex]\int_{b}^{a}      [/Tex]f(x) dx = F(a) – F(b)………. (2)

From (1) and (2) 

We can derive [Tex]\int_{a}^{b}     [/Tex] f(x) dx = –[Tex]\int_{b}^{a}     [/Tex] f(x) dx

Property 3: [Tex]\int_{a}^{b}     [/Tex]f(x) dx = [Tex]\int_{a}^{p}     [/Tex]f(x) dx + [Tex]\int_{p}^{b}     [/Tex]f(x) dx

Proof:

[Tex]\int_{a}^{b}     [/Tex] f(x) dx = F(b) – F(a) ………..(1)

[Tex]\int_{a}^{p}     [/Tex] f(x) dx = F(p) – F(a) ………..(2)

[Tex]\int_{p}^{b}     [/Tex] f(x) dx = F(b) – F(p) ………..(3)

From (2) and (3)

[Tex]\int_{a}^{p}     [/Tex]f(x) dx +[Tex] \int_{p}^{b}     [/Tex]f(x) dx = F(p) – F(a) + F(b) – F(p)

[Tex]\int_{a}^{p}     [/Tex]f(x) dx + [Tex]\int_{p}^{b}     [/Tex]f(x) dx = F(b) – F(a) = [Tex]\int_{a}^{b}     [/Tex]f(x) dx    

Hence, it is Proved.

Property 4.1: [Tex]\int_{a}^{b}     [/Tex] f(x) dx = [Tex]\int_{a}^{b}     [/Tex]f(a + b – x) dx

Proof:

Suppose 

a + b – x = y…………(1)

-dx = dy 

From (1) you can see 

when x = a  

y = a + b – a

y = b

and when x = b

y = a + b – b

y = a

Replacing by these values he integration on right side becomes [Tex]-\int_{b}^{a}     [/Tex] f(y)dy

From property 1 and property 2 you can say that 

[Tex]\int_{a}^{b}     [/Tex] f(x) dx = [Tex]\int_{a}^{b}     [/Tex]f(a + b – x) dx  

Property 4.2: If the value of a is given as 0 then property 4.1 can be written as

 [Tex]\int_{0}^{b}     [/Tex] f(x) dx = [Tex]\int_{0}^{b}     [/Tex]f(b – x) dx

Property 5: [Tex]\int_{0}^{2a}     [/Tex] f(x) dx = [Tex]\int_{0}^{a}     [/Tex]f(x) dx + [Tex]\int_{0}^{a}     [/Tex]f(2a – x) dx

Proof:

We can write [Tex]\int_{0}^{2a}     [/Tex] f(x) dx as

[Tex]\int_{0}^{2a}     [/Tex] f(x) dx = [Tex]\int_{0}^{a}     [/Tex]f(x) dx + [Tex]\int_{a}^{2a}     [/Tex]f(x) dx  ………….. (1)

I = I1 + I

(from property 3)

Suppose 2a – x = y

-dx = dy

Also when x = 0

y = 2a, and when x = a

y = 2a – a = a

So, [Tex]\int_{0}^{a}     [/Tex] f(2a – x)dx  can be written as 

[Tex]-\int_{2a}^{a}      [/Tex]f(y) dy = I2

Replacing equation (1) with the value of I2 we get 

[Tex]\int_{0}^{2a}     [/Tex] f(x) dx = [Tex]\int_{0}^{a}     [/Tex]f(x) dx + [Tex]\int_{0}^{a}     [/Tex]f(2a – x) dx

Property 6 : [Tex]\int_{0}^{2a}[/Tex] f(x) dx = 2[Tex]\int_{0}^{a}[/Tex]f(x) dx; if f(2a – x) = f(x)

                                                      =  0; if f(2a – x) = -f(x) 

Proof: 

From property 5 we can write [Tex]\int_{0}^{2a}     [/Tex] f(x) dx as

[Tex]\int_{0}^{2a}     [/Tex] f(x) dx =[Tex]\int_{0}^{a}     [/Tex]f(x) dx + [Tex]\int_{0}^{a}     [/Tex]f(2a – x) dx  ………….(1)

Part  1: If f(2a – x) = f(x) 

Then equation (1) can be written as 

[Tex]\int_{0}^{2a}     [/Tex]f(x) dx =[Tex]\int_{0}^{a}     [/Tex]f(x) dx + [Tex]\int_{0}^{a}     [/Tex]f(x) dx

This can be further written as 

[Tex]\int_{0}^{2a}     [/Tex] f(x) dx = 2 [Tex]\int_{0}^{a}     [/Tex]f(x) dx

Part  2: If f(2a – x) = -f(x)

Then equation (1) can be written as 

 [Tex]\int_{0}^{2a}     [/Tex] f(x) dx=[Tex] \int_{0}^{a}     [/Tex]f(x) dx – [Tex]\int_{0}^{a}     [/Tex]f(x) dx

This can be further written as 

[Tex]\int_{0}^{2a}     [/Tex] f(x) dx= 0

Property 7: [Tex]\int_{-a}^{a}[/Tex] f(x) dx = 2[Tex]\int_{0}^{a}[/Tex]f(x) dx; if a function is even i.e. f(-x) = f(x)

                                                = 0; if a function is odd i.e. f(-x) = -f(x)

Proof: 

From property 3 we can write 

[Tex]\int_{-a}^{a}     [/Tex] f(x) dx as 

[Tex]\int_{-a}^{a}     [/Tex] f(x) dx = [Tex]\int_{-a}^{0}     [/Tex]f(x) dx + [Tex]\int_{0}^{a}     [/Tex]f(x) dx  ………(1)

Suppose 

[Tex]\int_{-a}^{0}     [/Tex] f(x) dx = I1 ……(2)

Now, assume x = -y

So, dx = -dy

And also when x = -a then

y= -(-a) = a

and when x = 0 then, y = 0

Putting these values in equation (2) we get

I1 [Tex]-\int_{a}^{0}     [/Tex] f(-y)dy

Using property 2, I1 can be written as 

I1[Tex]\int_{0}^{a}     [/Tex] f(-y)dy

and using property 1 I1 can be written  as 

I1 [Tex]\int_{0}^{a}     [/Tex] f(-x)dx

Putting value of I1 in equation (1), we get

[Tex]\int_{-a}^{a}     [/Tex] f(x) dx = [Tex]\int_{0}^{a}     [/Tex]f(-x) dx +[Tex]\int_{0}^{a}     [/Tex]f(x) dx   ……….(3)

Part 1: When f(-x) = f(x)

Then equation(3) becomes

[Tex]\int_{-a}^{a}     [/Tex] f(x) dx = [Tex]\int_{0}^{a}     [/Tex]f(x) dx + [Tex]\int_{0}^{a}     [/Tex]f(x) dx

[Tex]\int_{-a}^{a}     [/Tex] f(x) dx = 2[Tex]\int_{0}^{a}     [/Tex]f(x) dx 

Part  2: When f(-x) = -f(x)

Then equation 3 becomes

[Tex]\int_{-a}^{a}     [/Tex] f(x) dx = –[Tex]\int_{0}^{a}     [/Tex]f(x) dx +[Tex]\int_{0}^{a}     [/Tex]f(x) d

[Tex]\int_{-a}^{a}     [/Tex] f(x)dx = 0

Example on Properties of Definite Integrals

Example 1: I = [Tex]\int_{0}^{1}     [/Tex] x(1 – x)99 dx

Solution:

Using  property  4.2 he given question can be written as 

[Tex]\int_{0}^{1}     [/Tex] (1 – x) [1 – (1 – x)]99 dx

[Tex]\int_{0}^{1}     [/Tex] (1 – x) [1 – 1 + x]99 dx

[Tex] \int_{0}^{1}     [/Tex](1 – x)x99 dx

[Tex]\begin{bmatrix} \frac{x^{100}}{100} – \frac{x^{101}}{101} \end{bmatrix}_{0}^{1} [/Tex]

= 1/100 – 1/101

= 1 / 10100

Example 2: I = [Tex]\int_{\frac{-1}{2}}^{\frac{-1}{2}}     [/Tex] cos(x) log [Tex]\begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix} [/Tex]

Solution:

f(x) = cos(x) log [Tex]\begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix} [/Tex]

 f(-x) = cos(-x) log [Tex]\begin{vmatrix} \frac{1-x}{1+x} \end{vmatrix} [/Tex]

 f(-x) = -cos(x) log [Tex]\begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix} [/Tex]

f(-x) = -f(x)

Hence the function is odd. So, Using property 

[Tex]\int_{-a}^{a}     [/Tex] f(x)dx = 0; if a function is odd i.e. f(-x) = -f(x) 

[Tex]\int_{\frac{-1}{2}}^{\frac{-1}{2}}     [/Tex] cos(x) log [Tex]\begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix}     [/Tex] = 0

Example 3: I = [Tex]\int_{0}^{5}     [/Tex] [x] dx

Solution:

[Tex]\int_{0}^{1}     [/Tex] 0 dx + [Tex]\int_{1}^{2}     [/Tex]1 dx + [Tex]\int_{2}^{3}     [/Tex] 2 dx +[Tex]\int_{3}^{4}     [/Tex] 3 dx + [Tex]\int_{4}^{5}     [/Tex] 4 dx  [using Property 3]

= 0 + [x]21 + 2[x]32  + 3[x]43 + 4[x]54 

= 0 + (2 – 1) + 2(3 – 2) + 3(4 – 3) + 4(5 – 4)

= 0 + 1 + 2 + 3 + 4

= 10

Example 4: I = [Tex] \int_{-1}^{2}     [/Tex] |x| dx

Solution:

[Tex]\int_{-1}^{0}     [/Tex] (-x) dx + [Tex]\int_{0}^{2}     [/Tex] (x) dx  [using Property 3] 

= -[x2/2]0-1 + [x2/2]2 

= -[0/2 – 1/2] + [4/2 – 0]

= 1/2 + 2

= 5/2



Last Updated : 27 Feb, 2024
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads