Open In App

# Properties of Asymptotic Notations

Prerequisite: Asymptotic Notations Assuming f(n), g(n) and h(n) be asymptotic functions the mathematical definitions are:

1. If f(n) = Θ(g(n)), then there exists positive constants c1, c2, n0 such that 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n), for all n ≥ n0
2. If f(n) = O(g(n)), then there exists positive constants c, n0 such that 0 ≤ f(n) ≤ c.g(n), for all n ≥ n0
3. If f(n) = Ω(g(n)), then there exists positive constants c, n0 such that 0 ≤ c.g(n) ≤ f(n), for all n ≥ n0
4. If f(n) = o(g(n)), then there exists positive constants c, n0 such that 0 ≤ f(n) < c.g(n), for all n ≥ n0
5. If f(n) = ω(g(n)), then there exists positive constants c, n0 such that 0 ≤ c.g(n) < f(n), for all n ≥ n0

Properties:

Reflexivity: If f(n) is given then

`f(n) = O(f(n))`

Example: If f(n) = n3 ⇒ O(n3) Similarly,

```f(n) = Ω(f(n))
f(n) = Θ(f(n)) ```

Symmetry:

`f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n))`

Example: If f(n) = n2 and g(n) = n2 then f(n) = Θ(n2) and g(n) = Θ(n2

Proof:

• Necessary part: f(n) = Θ(g(n)) ⇒ g(n) = Θ(f(n)) By the definition of Θ, there exists positive constants c1, c2, no such that c1.g(n) ≤ f(n) ≤ c2.g(n) for all n ≥ no ⇒ g(n) ≤ (1/c1).f(n) and g(n) ≥ (1/c2).f(n) ⇒ (1/c2).f(n) ≤ g(n) ≤ (1/c1).f(n) Since c1 and c2 are positive constants, 1/c1 and 1/c2 are well defined. Therefore, by the definition of Θ, g(n) = Θ(f(n))
• Sufficiency part: g(n) = Θ(f(n)) ⇒ f(n) = Θ(g(n)) By the definition of Θ, there exists positive constants c1, c2, no such that c1.f(n) ≤ g(n) ≤ c2.f(n) for all n ≥ no ⇒ f(n) ≤ (1/c1).g(n) and f(n) ≥ (1/c2).g(n) ⇒ (1/c2).g(n) ≤ f(n) ≤ (1/c1).g(n) By the definition of Theta(Θ), f(n) = Θ(g(n))

Transistivity:

`f(n) = O(g(n)) and g(n) = O(h(n)) ⇒ f(n) = O(h(n))`

Example: If f(n) = n, g(n) = n2 and h(n) = n3 ⇒ n is O(n2) and n2 is O(n3) then n is O(n3

Proof: f(n) = O(g(n)) and g(n) = O(h(n)) ⇒ f(n) = O(h(n)) By the definition of Big-Oh(O), there exists positive constants c, no such that f(n) ≤ c.g(n) for all n ≥ no ⇒ f(n) ≤ c1.g(n) ⇒ g(n) ≤ c2.h(n) ⇒ f(n) ≤ c1.c2h(n) ⇒ f(n) ≤ c.h(n), where, c = c1.c2

By the definition, f(n) = O(h(n)) Similarly,

```f(n) = Θ(g(n)) and g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n))
f(n) = Ω(g(n)) and g(n) = Ω(h(n)) ⇒ f(n) = Ω(h(n))
f(n) = o(g(n)) and g(n) = o(h(n)) ⇒ f(n) = o(h(n))
f(n) = ω(g(n)) and g(n) = ω(h(n)) ⇒ f(n) = ω(h(n))```

Transpose Symmetry:

`f(n) = O(g(n)) if and only if g(n) = Ω(f(n))`

Example: If f(n) = n and g(n) = n2 then n is O(n2) and n2 is Ω(n)

Proof:

• Necessary part: f(n) = O(g(n)) ⇒ g(n) = Ω(f(n)) By the definition of Big-Oh (O) ⇒ f(n) ≤ c.g(n) for some positive constant c ⇒ g(n) ≥ (1/c).f(n) By the definition of Omega (Ω), g(n) = Ω(f(n))
• Sufficiency part: g(n) = Ω(f(n)) ⇒ f(n) = O(g(n)) By the definition of Omega (Ω), for some positive constant c ⇒ g(n) ≥ c.f(n) ⇒ f(n) ≤ (1/c).g(n) By the definition of Big-Oh(O), f(n) = O(g(n))

Since these properties hold for asymptotic notations, analogies can be drawn between functions f(n) and g(n) and two real numbers a and b.

• g(n) = O(f(n)) is similar to a ≤ b
• g(n) = Ω(f(n)) is similar to a ≥ b
• g(n) = Θ(f(n)) is similar to a = b
• g(n) = o(f(n)) is similar to a < b
• g(n) = ω(f(n)) is similar to a > b

Observations:

`max(f(n), g(n)) = Θ(f(n) + g(n)) `

Proof: Without loss of generality, assume f(n) ≤ g(n), ⇒ max(f(n), g(n)) = g(n)

Consider, g(n) ≤ max(f(n), g(n)) ≤ g(n) ⇒ g(n) ≤ max(f(n), g(n)) ≤ f(n) + g(n) ⇒ g(n)/2 + g(n)/2 ≤ max(f(n), g(n)) ≤ f(n) + g(n)

From what we assumed, we can write ⇒ f(n)/2 + g(n)/2 ≤ max(f(n), g(n)) ≤ f(n) + g(n) ⇒ (f(n) + g(n))/2 ≤ max(f(n), g(n)) ≤ f(n) + g(n)

By the definition of Θ, max(f(n), g(n)) = Θ(f(n) + g(n))

`O(f(n)) + O(g(n)) = O(max(f(n), g(n)))`

Proof: Without loss of generality, assume f(n) ≤ g(n) ⇒ O(f(n)) + O(g(n)) = c1.f(n) + c2.g(n) From what we assumed, we can write O(f(n)) + O(g(n)) ≤ c1.g(n) + c2.g(n) ≤ (c1 + c2) g(n) ≤ c.g(n) ≤ c.max(f(n), g(n))

By the definition of Big-Oh(O), O(f(n)) + O(g(n)) = O(max(f(n), g(n)))

Note:

1. If lim n→∞ f(n)/g(n) = c, c ∈ R+ then f(n) = Θ(g(n))
2. If lim n→∞ f(n)/g(n) ≤ c, c ∈ R (c can be 0) then f(n) = O(g(n))
3. If lim n→∞ f(n)/g(n) = 0, then f(n) = O(g(n)) and g(n) = O(f(n))
4. If lim n→∞ f(n)/g(n) ≥ c, c ∈ R (c can be ∞) then f(n) = Ω(g(n))
5. If lim n→∞ f(n)/g(n) = ∞, then f(n) = Ω(g(n))and g(n) = Ω(f(n))

### Big O :Notation

1. O(f(n)) represents an upper bound on the growth rate of a function f(n).
2. For a function g(n), g(n) = O(f(n)) means that the growth rate of g(n) is no faster than the growth rate of f(n) asymptotically.
3. O notation represents the worst-case scenario for the running time or space complexity of an algorithm.

### Omega Notation:

1. Ω(f(n)) represents a lower bound on the growth rate of a function f(n).
2. For a function g(n), g(n) = Ω(f(n)) means that the growth rate of g(n) is no slower than the growth rate of f(n) asymptotically.
3. Ω notation represents the best-case scenario for the running time or space complexity of an algorithm.

### Theta Notation:

1. Θ(f(n)) represents an upper and lower bound on the growth rate of a function f(n).
2. For a function g(n), g(n) = Θ(f(n)) means that the growth rate of g(n) is bounded both above and below by the growth rate of f(n) asymptotically.
3. Θ notation represents the average-case scenario for the running time or space complexity of an algorithm.

### In general, these notations have the following properties:

1. Reflexive: f(n) = O(f(n)), f(n) = Ω(f(n)), f(n) = Θ(f(n))
2. Transitive: if f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))
3. Symmetric: if f(n) = Θ(g(n)), then g(n) = Θ(f(n))
4. Addition: f(n) + g(n) = O(max(f(n), g(n))), f(n) + g(n) = Θ(max(f(n), g(n)))
5. Multiplication: f(n) * g(n) = O(f(n) * g(n)), f(n) * g(n) = Ω(f(n) * g(n)), f(n) * g(n) = Θ(f(n) * g(n))
6. Understanding these properties is crucial in analyzing the efficiency of algorithms and selecti