Project Idea | YouTube Ad Recommendation

Project Title: YouTube Ad Recommendation

Idea :
A B2B application, to segment YouTube videos on the basis of content, to optimize conversion rate of Ads.

What we have :
People (like SocialBlade) currently do this majorly by extracting metadata (like Title, Language, Current views, date published) and regress to generate future views.



What I propose :
The most important part of a YouTube post is the content (video) itself. Unfortunately, this is not in use due to lack of computation power. However, the idea is to generate a dataset using Computer Vision technology, and applying ensemble methods on the generated dataset to generate useful information like target audience demographics, genre, region and finally popularity prediction (this being the most important part).

Things we will need :

  • GPU (Recommended – Nvidia GTX 980)
  • List of links to YouTube videos (that’s right, we don’t need to download the M dataset)
  • High speed internet

Concepts :
This idea can be divided into two parts:

  • Dataset generation
  • Modelling & Prediction

In the first part, we write a script to get instances of video in Python environment, and extract all useful information from it. This can be done by –

filter_none

edit
close

play_arrow

link
brightness_4
code

import pafy
import vlc
  
url = "https://www.youtube.com / watch?v = dZ0fwJojhrs"
video = pafy.new(url)

chevron_right


Once we get the video, we can use a one in every few frames and run object detection over it (this can be done by opensource libraries such as OpenCV). You can see it in action here.

We then vote, and take the topmost relevant objects and populate a table. After running one full video, its entry in the table will look like this –

We can, of course, include metadata too in our final dataset. Our target variable will be the number of reactions and the number of views. We can also cluster the dataset to facilitate Ads.

In the next part, we use standard Machine Learning libraries such as LightGBM/XGBoost to generate predictions.

Conclusion :
YouTube has become the highest content holder. The prime revenue is Ads and the Ad industry will vouch for placing customized ads on content to improve conversion rate. If the Ad company knows, which video has potential of being popular, they will place non-skip-able ads on them from very beginning. This will also prevent us from seeing irrelevant ads. For eg., if you are watching a fitness related video, you will see an ad of protein shakes and not of Zomato.

Note: This project idea is contributed by Mohit Sinha for ProGeek Cup 2.0- A project competition by GeeksforGeeks.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : mohit.sinha



Article Tags :

1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.