Project Idea | IoT based Emancipator Helmet

Project Title: Development of an App-enabled Smart Helmet for Real-time Detection and Reporting of Accidents

1. Introduction:

    Road accidents are dreaded incidents which are known to take about 146 thousand lives in a year in India itself. Out of these, it is usually seen that about 32% all such accidents are attributable to motorcycles only and out of which 23% lose their lives. It is easy to blame the 98.6% of bikers who died didn’t wear a helmet but what about the 1.4% who did their part of trying to protect themselves from an injury? Reports suggest that these cases are primarily due to the delay in taking such casualty to a hospital. This can be avoided if the process of reporting an accident became automated. Thus, we propose this solution, where the helmet itself initiates a communication to report the accident using the person’s phone.

    The helmet has inbuilt pressure sensors which are cheap yet effective and productive. These contain two flexible metal plates with a velostat in between the layers. As the pressure changes, the resistance drops across the plates and the Raspberry Pi reads it through an analog to digital converter. So when the rider crashes, the spike in the sensor initiates a code which updates the online database triggering the application on a rider’s phone to send an alert to nearby hospitals. Thus the location is precise. The person has authority to stop false alert in case of a false trigger using a security PIN. The solution proposed in this paper does not affect the status quo by trying to modify the motorcycle itself, etc.

    Additionally, in rare cases where the phone is unable to generate an alert, the helmet, if fitted with a additional speaker module , can give a loud and clear message as an attempt to draw attention. The app contains a feature namely Help Anonymously which can motivate people to help someone lying roadside in need of help without revealing their identity or getting into legal proceedings. Thus, we attempt to ensure that we care for people’s lives who actually care for their own.



    2. Current Scenario:

    There have been many attempts at building a perfect smart helmet. Smart Helmet with Sensors for Accident Prevention by Mohd Khairul Afiq Mohd Rasli, Nina Korlina Madzhi, Juliana Johari , employs Peripheral Interface Controller or PIC 16F84a microcontroller to control the system. The helmet has a force sensing resistor and speed sensor (Brushless DC Fan) and uses 315 MHz RF for communication. This doesn’t present itself as the best solution due to the fact that the motorcycle’s engine will only start is the helmet is worn and the belt has been buckled. Also, the communication is unidirectional. Smart Helmet: A Protective Headgear System by Nilesh M. Verulkar,
    Swati S. Patil, Namrata A. Gandhi, and Komal B. Todkar
    uses Arduino with vibration sensors and RF communication along with LDR for headlight control, alcohol sensor to prevent drink and drive and GPS and GSM module. This poses an issue as multiple modules are multiple points of failure. If either of them dysfunctions, the rider is unable to start his/her motorcycle, control the headlight, etc. Also, the solution uses a vibration sensor which can be triggered if the helmet falls on ground erroneously. As GSM and GPS modules are controlled by the Arduino, the person has no control over it other than the abort switch which is installed in the bike itself. Lastly, if the GPS or GSM doesn’t work properly, the entire system fails. Thus, it has many loopholes.
    The aforementioned shortcomings of GPS, GSM modules and altering the bike itself has been seen in multiple papers like Smart Helmet by Kajal Thakare, Smart-Helmet system by Anshu Singh Gautam.
    Smart Helmet by Saravana Kumar K, Anjana.B.S. S and “Smart Helmet” and Smart Helmet by Nitin Agarwal poses other threats like the former distracts the rider by talking to him/her while the latter can cause the bike to stop suddenly if the helmet’s touch is lost from rider’s head.
    Thus, the existing models pose multiple problems which we attempt to reduce significantly by reducing hardware dependency and tedious methods of communication.

    3. Why is our take better?

      The solution we propose uses the internet to provide reliability. As the concept of the Internet of Things (IoT) is picking up the pace, it becomes important to keep up with technology. Since all phones today come with internet connectivity and inbuilt GPS tracker, it becomes the most obvious choice and option to explore. With low energy technologies like Bluetooth embedded in Raspberry Pi and phone both, they can be interlinked, so as to ensure that either of the two components is carried together without fail. The hereby proposed solution ensures:-

    • The bike isn’t altered in any way so that any disfunction doesn’t affect the ride.
    • The pressure sensors are cheap and placed in between the helmet’s inner wall and head, thus drops won’t start a false trigger.
    • Minimal use of hardware to prevent points of failures.
    • Free mode of communication, no requirement of external communication modules.
    • Can be even used as an attachment, no need for a custom helmet.
    • The estimated cost for our device and required tools would be around Rs.1000/helmet.