Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Proizvolov’s Identity

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given two arrays A and B of size N. Array A is in increasing order and B is in decreasing order. Both arrays are the subsequences of the numbers from 1 to 2N. The task is to find the sum of the absolute difference of two arrays.
 

Sum = |A1 – B1| + |A2 – B2| + |A3 – B3| + …. + |AN – BN
 

Examples: 
 

Input : A[] = {1, 2, 3, 4, 5}, B[] = {10, 9, 8, 7, 6} 
Output : 25
Input : A[] = {1, 5, 6, 8, 10, 12}, B[] = {11, 9, 7, 4, 3, 2} 
Output : 36 
 

 

Naive Approach: A naive approach is to run a loop and find the sum of the absolute differences.
Efficient Approach: Proizvolov’s identity is an identity concerning sums of the differences of positive integers. It states that if we take first 2N integers and partition them into two subsets of N numbers each. 
Arrange one subset in increasing order : A1 < A2 < A3 < …. < AN
Arrange another subset in decreasing order : B1 > B2 > B3 > …. > BN
Then the sum |A1 – B1| + |A2 – B2| + |A3 – B3| + …. + |AN – BN| is always equals to N2
Below is the implementation of the above approach: 
 

C++




// CPP program to implement proizvolov's identity
#include<bits/stdc++.h>
using namespace std;
 
// Function to implement proizvolov's identity
int proizvolov(int a[], int b[], int n)
{
    // According to proizvolov's identity
    return n*n;
}
 
// Driver code
int main()
{
    int a[] = {1, 5, 6, 8, 10}, b[] = {9, 7, 4, 3, 2};
     
    int n = sizeof(a) / sizeof(a[0]);
     
    // Function call
    cout << proizvolov(a, b, n);
     
    return 0;
}

Java




// Java program to implement proizvolov's identity
class GFG
{
    // Function to implement proizvolov's identity
    static int proizvolov(int a [], int b [], int n)
    {
        // According to proizvolov's identity
        return n * n;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int a [] = {1, 5, 6, 8, 10};
        int b [] = {9, 7, 4, 3, 2};
         
        int n = a.length;
         
        // Function call
        System.out.println(proizvolov(a, b, n));
    }
}
 
// This code is contributed by ihritik

Python3




# Python3 program to implement
# proizvolov's identity
 
# Function to implement
# proizvolov's identity
def proizvolov(a, b, n):
    return n * n
 
# Driver code
a = [ 1, 5, 6, 8, 10 ]
b = [ 9, 7, 4, 3, 2 ]
n = len(a)
 
# Function call
print(proizvolov(a, b, n, ))
 
# This code is contributed by nidhiva

C#




// C# program to implement proizvolov's identity
using System;
 
class GFG
{
    // Function to implement proizvolov's identity
    static int proizvolov(int [] a,
                          int [] b, int n)
    {
        // According to proizvolov's identity
        return n * n;
    }
     
    // Driver code
    public static void Main ()
    {
        int [] a = {1, 5, 6, 8, 10};
        int [] b = {9, 7, 4, 3, 2};
         
        int n = a.Length;
         
        // Function call
        Console.WriteLine(proizvolov(a, b, n));
    }
}
 
// This code is contributed by ihritik

Javascript




<script>
 
// Javascript program to implement
// proizvolov's identity
 
// Function to implement proizvolov's identity
function proizvolov(a, b, n)
{
    // According to proizvolov's identity
    return n*n;
}
 
// Driver code
    let a = [1, 5, 6, 8, 10], b = [9, 7, 4, 3, 2];
     
    let n = a.length;
     
    // Function call
    document.write(proizvolov(a, b, n));
 
</script>

Output: 

25

 

Time complexity: O(1) because constant operations are done

Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 01 Sep, 2022
Like Article
Save Article
Similar Reads
Related Tutorials