Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Proizvolov’s Identity

  • Last Updated : 13 Sep, 2021

Given two arrays A and B of size N. Array A is in increasing order and B is in decreasing order. Both arrays are the subsequences of the numbers from 1 to 2N. The task is to find the sum of the absolute difference of two arrays.
 

Sum = |A1 – B1| + |A2 – B2| + |A3 – B3| + …. + |AN – BN
 

Examples: 
 

Input : A[] = {1, 2, 3, 4, 5}, B[] = {10, 9, 8, 7, 6} 
Output : 25
Input : A[] = {1, 5, 6, 8, 10, 12}, B[] = {11, 9, 7, 4, 3, 2} 
Output : 36 
 

 

Naive Approach: A naive approach is to run a loop and find the sum of the absolute differences.
Efficient Approach: Proizvolov’s identity is an identity concerning sums of the differences of positive integers. It states that if we take first 2N integers and partition them into two subsets of N numbers each. 
Arrange one subset in increasing order : A1 < A2 < A3 < …. < AN
Arrange another subset in decreasing order : B1 > B2 > B3 > …. > BN
Then the sum |A1 – B1| + |A2 – B2| + |A3 – B3| + …. + |AN – BN| is always equals to N2
Below is the implementation of the above approach: 
 

C++




// CPP program to implement proizvolov's identity
#include<bits/stdc++.h>
using namespace std;
 
// Function to implement proizvolov's identity
int proizvolov(int a[], int b[], int n)
{
    // According to proizvolov's identity
    return n*n;
}
 
// Driver code
int main()
{
    int a[] = {1, 5, 6, 8, 10}, b[] = {9, 7, 4, 3, 2};
     
    int n = sizeof(a) / sizeof(a[0]);
     
    // Function call
    cout << proizvolov(a, b, n);
     
    return 0;
}

Java




// Java program to implement proizvolov's identity
class GFG
{
    // Function to implement proizvolov's identity
    static int proizvolov(int a [], int b [], int n)
    {
        // According to proizvolov's identity
        return n * n;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int a [] = {1, 5, 6, 8, 10};
        int b [] = {9, 7, 4, 3, 2};
         
        int n = a.length;
         
        // Function call
        System.out.println(proizvolov(a, b, n));
    }
}
 
// This code is contributed by ihritik

Python3




# Python3 program to implement
# proizvolov's identity
 
# Function to implement
# proizvolov's identity
def proizvolov(a, b, n):
    return n * n
 
# Driver code
a = [ 1, 5, 6, 8, 10 ]
b = [ 9, 7, 4, 3, 2 ]
n = len(a)
 
# Function call
print(proizvolov(a, b, n, ))
 
# This code is contributed by nidhiva

C#




// C# program to implement proizvolov's identity
using System;
 
class GFG
{
    // Function to implement proizvolov's identity
    static int proizvolov(int [] a,
                          int [] b, int n)
    {
        // According to proizvolov's identity
        return n * n;
    }
     
    // Driver code
    public static void Main ()
    {
        int [] a = {1, 5, 6, 8, 10};
        int [] b = {9, 7, 4, 3, 2};
         
        int n = a.Length;
         
        // Function call
        Console.WriteLine(proizvolov(a, b, n));
    }
}
 
// This code is contributed by ihritik

Javascript




<script>
 
// Javascript program to implement
// proizvolov's identity
 
// Function to implement proizvolov's identity
function proizvolov(a, b, n)
{
    // According to proizvolov's identity
    return n*n;
}
 
// Driver code
    let a = [1, 5, 6, 8, 10], b = [9, 7, 4, 3, 2];
     
    let n = a.length;
     
    // Function call
    document.write(proizvolov(a, b, n));
 
</script>
Output: 
25

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!