Given three positive integers X, Y, and B, where X and Y are Base-B integers, the task is to find the value of X – Y such that X >= Y.
Examples:
Input: X = 1212, Y = 256, B = 8
Output: 0734
Explanation: The value of 1212 – 256 in base 8 is 734.
Input: X = 546, Y = 248, B = 9
Output: 287
Approach: The given problem can be solved by using basic mathematics subtraction. Follow the steps below to solve the given problem:
- Initialize two variables say power = 1, carry = 0, to keep track of current power and carry generated while subtracting respectively.
- Initialize a variable, say finalVal = 0, to store the resultant value of X – Y.
- Iterate a loop until X > 0 and perform the following steps:
- Store last digits from the current value of X and Y in two variables, say n1 = X % 10 and n2 = Y % 10 respectively.
- Remove last digits from X and Y by updating X = X / 10 and Y = Y / 10.
- Initialize temp = n1 – n2 + carry.
- If temp < 0, then add base B to N, that is N = N + B and set carry = -1, which will act as a borrow. Otherwise, set carry = 0.
- Add current temp * power to finalVal, that is finalVal = finalVal + temp * power and set power = power * 10.
- After completing the above steps, print the value of finalVal as the result.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int getDifference( int B, int X, int Y)
{
int finalVal = 0;
int carry = 0;
int power = 1;
while (X > 0) {
int n1 = X % 10;
int n2 = Y % 10;
X = X / 10;
Y = Y / 10;
int temp = n1 - n2 + carry;
if (temp < 0) {
carry = -1;
temp += B;
}
else {
carry = 0;
}
finalVal += temp * power;
power = power * 10;
}
return finalVal;
}
int main()
{
int X = 1212;
int Y = 256;
int B = 8;
cout << (getDifference(B, X, Y));
return 0;
}
|
Java
import java.io.*;
class GFG {
public static int getDifference(
int B, int X, int Y)
{
int finalVal = 0 ;
int carry = 0 ;
int power = 1 ;
while (X > 0 ) {
int n1 = X % 10 ;
int n2 = Y % 10 ;
X = X / 10 ;
Y = Y / 10 ;
int temp = n1 - n2 + carry;
if (temp < 0 ) {
carry = - 1 ;
temp += B;
}
else {
carry = 0 ;
}
finalVal += temp * power;
power = power * 10 ;
}
return finalVal;
}
public static void main(String[] args)
{
int X = 1212 ;
int Y = 256 ;
int B = 8 ;
System.out.println(
getDifference(B, X, Y));
}
}
|
Python3
def getDifference(B, X, Y) :
finalVal = 0 ;
carry = 0 ;
power = 1 ;
while (X > 0 ) :
n1 = X % 10 ;
n2 = Y % 10 ;
X = X / / 10 ;
Y = Y / / 10 ;
temp = n1 - n2 + carry;
if (temp < 0 ) :
carry = - 1 ;
temp + = B;
else :
carry = 0 ;
finalVal + = temp * power;
power = power * 10 ;
return finalVal;
if __name__ = = "__main__" :
X = 1212 ;
Y = 256 ;
B = 8 ;
print (getDifference(B, X, Y));
|
C#
using System;
public class GFG
{
public static int getDifference( int B, int X, int Y)
{
int finalVal = 0;
int carry = 0;
int power = 1;
while (X > 0) {
int n1 = X % 10;
int n2 = Y % 10;
X = X / 10;
Y = Y / 10;
int temp = n1 - n2 + carry;
if (temp < 0) {
carry = -1;
temp += B;
}
else {
carry = 0;
}
finalVal += temp * power;
power = power * 10;
}
return finalVal;
}
public static void Main( string [] args)
{
int X = 1212;
int Y = 256;
int B = 8;
Console.WriteLine(getDifference(B, X, Y));
}
}
|
Javascript
<script>
function getDifference(B, X, Y) {
let finalVal = 0;
let carry = 0;
let power = 1;
while (X > 0) {
let n1 = X % 10;
let n2 = Y % 10;
X = Math.floor(X / 10);
Y = Math.floor(Y / 10);
let temp = n1 - n2 + carry;
if (temp < 0) {
carry = -1;
temp += B;
} else {
carry = 0;
}
finalVal += temp * power;
power = power * 10;
}
return finalVal;
}
let X = 1212;
let Y = 256;
let B = 8;
document.write(getDifference(B, X, Y));
</script>
|
Time Complexity: O(log10N)
Auxiliary Space: O(1)
However, we can optimize the solution by performing the following steps:
- First, convert the given numbers X and Y into decimal form.
- Then, find the difference between X and Y.
- Finally, convert the decimal difference back into the given base.
Here’s the implementation of the above approach:
C++
#include <iostream>
#include <cmath>
using namespace std;
int toDecimal( int num, int base) {
int res = 0, power = 1;
while (num > 0) {
int digit = num % 10;
res += digit * power;
power *= base;
num /= 10;
}
return res;
}
int toBase( int num, int base) {
int res = 0, power = 1;
while (num > 0) {
int digit = num % base;
res += digit * power;
power *= 10;
num /= base;
}
return res;
}
int getDifference( int B, int X, int Y)
{
int X_dec = toDecimal(X, B);
int Y_dec = toDecimal(Y, B);
int diff_dec = X_dec - Y_dec;
int diff = toBase(diff_dec, B);
return diff;
}
int main()
{
int X = 1212;
int Y = 256;
int B = 8;
cout << getDifference(B, X, Y);
return 0;
}
|
Java
import java.lang.Math;
public class Main {
static int toDecimal( int num, int base) {
int res = 0 , power = 1 ;
while (num > 0 ) {
int digit = num % 10 ;
res += digit * power;
power *= base;
num /= 10 ;
}
return res;
}
static int toBase( int num, int base) {
int res = 0 , power = 1 ;
while (num > 0 ) {
int digit = num % base;
res += digit * power;
power *= 10 ;
num /= base;
}
return res;
}
static int getDifference( int B, int X, int Y) {
int X_dec = toDecimal(X, B);
int Y_dec = toDecimal(Y, B);
int diff_dec = X_dec - Y_dec;
int diff = toBase(diff_dec, B);
return diff;
}
public static void main(String[] args) {
int X = 1212 ;
int Y = 256 ;
int B = 8 ;
System.out.println(getDifference(B, X, Y));
}
}
|
Output:
734
Time Complexity: O(log^2 N)
Auxiliary Space: O(log N)