Skip to content
Related Articles

Related Articles

Improve Article
Program to print the pattern 1020304017018019020 **50607014015016 ****809012013 ******10011…
  • Last Updated : 21 May, 2021

Given an integer N, the task is to print the pattern below for the given value of N.  

For N = 5, below is the given pattern: 
 

Examples:  

Input: N = 4 
Output: 
1020304017018019020 
**50607014015016 
****809012013 
******10011



Input: N = 3 
Output: 
10203010011012 
**4050809 
****607 

Approach: The idea to understand the logic behind the given pattern is stated below:

By looking closely, we see that by replacing in-between zeroes with spaces, the pattern can be seen more clearly. The pattern is further divided into three different patterns.

  1. Case 1: Asterisk (*) character pattern follows a sequence from 0 and adds two more asterisks in each row, where the row is equal to N.
  2. Case 2: In this part, the pattern is very simple to understand. i.e the number of columns and rows will be equal to N and follows a sequence like 1, 2, 3, 4, 5…
  3. Case 3: Follow-up or bottom-up sequence is the interesting part where the numbers are represented from bottom to top.

Below is the implementation of the above approach: 

C++




// C++ implementation to print
// the given pattern
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of
// N integers from 1 to N
int sum(int n)
{
    return n * (n - 1) / 2;
}
 
// Function to print the given
// pattern
void BSpattern(int N)
{
    int Val = 0, Pthree = 0,
        cnt = 0, initial;
 
    string s = "**";
 
    // Iterate over [0, N - 1]
    for (int i = 0; i < N; i++) {
        cnt = 0;
 
        // Sub-Pattern - 1
        if (i > 0) {
            cout << s;
            s += "**";
        }
 
        // Sub-Pattern - 2
        for (int j = i; j < N; j++) {
 
            // Count the number of element
            // in rows and sub-pattern 2 and 3
            // will have same rows
            if (i > 0) {
                cnt++;
            }
            // Increment Val to print the
            // series 1, 2, 3, 4, 5 ...
            cout << ++Val;
            cout << 0;
        }
 
        // To get the first element of sub
        // pattern 3 find the sum of first N-1
        // elements first N-1 elements in row1
        // previous of Sub-Pattern 2
 
        // Finally, add the (N-1)th element
        // i.e., 5 and increment it by 1
        if (i == 0) {
            int Sumbeforelast = sum(Val) * 2;
            Pthree = Val + Sumbeforelast + 1;
            initial = Pthree;
        }
 
        // Initial is used to give the initial
        // value of the row in Sub-Pattern 3
        initial = initial - cnt;
 
        Pthree = initial;
 
        // Sub-Pattern 3
        for (int k = i; k < N; k++) {
 
            cout << Pthree++;
 
            // Skip printing zero at the last
            if (k != N - 1) {
                cout << 0;
            }
        }
 
        cout << "\n";
    }
}
 
// Driver Code
int main()
{
    // Given N
    int N = 5;
 
    // Function Call
    BSpattern(N);
    return 0;
}

Java




// Java implementation to print
// the given pattern
import java.util.*;
 
class GFG{
 
// Function to find the sum of
// N integers from 1 to N
static int sum(int n)
{
    return n * (n - 1) / 2;
}
 
// Function to print the given
// pattern
static void BSpattern(int N)
{
    int Val = 0, Pthree = 0,
        cnt = 0, initial = -1;
 
    String s = "**";
 
    // Iterate over [0, N - 1]
    for(int i = 0; i < N; i++)
    {
        cnt = 0;
         
        // Sub-Pattern - 1
        if (i > 0)
        {
            System.out.print(s);
            s += "**";
        }
 
        // Sub-Pattern - 2
        for(int j = i; j < N; j++)
        {
             
            // Count the number of element
            // in rows and sub-pattern 2
            // and 3 will have same rows
            if (i > 0)
            {
                cnt++;
            }
             
            // Increment Val to print the
            // series 1, 2, 3, 4, 5 ...
            System.out.print(++Val);
            System.out.print("0");
        }
 
        // To get the first element of sub
        // pattern 3 find the sum of first N-1
        // elements first N-1 elements in row1
        // previous of Sub-Pattern 2
 
        // Finally, add the (N-1)th element
        // i.e., 5 and increment it by 1
        if (i == 0)
        {
            int Sumbeforelast = sum(Val) * 2;
            Pthree = Val + Sumbeforelast + 1;
            initial = Pthree;
        }
 
        // Initial is used to give the initial
        // value of the row in Sub-Pattern 3
        initial = initial - cnt;
 
        Pthree = initial;
 
        // Sub-Pattern 3
        for(int k = i; k < N; k++)
        {
            System.out.print(Pthree++);
 
            // Skip printing zero at the last
            if (k != N - 1)
            {
                System.out.print("0");
            }
        }
        System.out.println();
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given N
    int N = 5;
     
    // Function call
    BSpattern(N);
}
}
 
// This code is contributed by offbeat

Python3




# Python3 implementation to print
# the given pattern
 
# Function to find the sum of
# N integers from 1 to N
def sum(n):
     
    return n * (n - 1) // 2
  
# Function to print the given
# pattern
def BSpattern(N):
     
    Val = 0
    Pthree = 0,
    cnt = 0 
    initial = -1
    s = "**"
  
    # Iterate over [0, N - 1]
    for i in range(N):
        cnt = 0
  
        # Sub-Pattern - 1
        if (i > 0):
            print(s, end = "")
            s += "**"
          
        # Sub-Pattern - 2
        for j in range(i, N):
             
            # Count the number of element
            # in rows and sub-pattern 2 and 3
            # will have same rows
            if (i > 0):
                cnt += 1
              
            # Increment Val to print the
            # series 1, 2, 3, 4, 5 ...
            Val += 1
            print(Val, end = "")
            print(0, end = "")
          
        # To get the first element of sub
        # pattern 3 find the sum of first N-1
        # elements first N-1 elements in row1
        # previous of Sub-Pattern 2
  
        # Finally, add the (N-1)th element
        # i.e., 5 and increment it by 1
        if (i == 0):
            Sumbeforelast = sum(Val) * 2
            Pthree = Val + Sumbeforelast + 1
            initial = Pthree
          
        # Initial is used to give the initial
        # value of the row in Sub-Pattern 3
        initial = initial - cnt
  
        Pthree = initial
  
        # Sub-Pattern 3
        for k in range(i, N):
            print(Pthree, end = "")
            Pthree += 1
  
            # Skip printing zero at the last
            if (k != N - 1):
                print(0, end = "")
                 
        print()
         
# Driver Code
 
# Given N
N = 5
  
# Function call
BSpattern(N)
 
# This code is contributed by sanjoy_62

C#




// C# implementation to print
// the given pattern
using System;
class GFG{
  
// Function to find the sum of
// N integers from 1 to N
static int sum(int n)
{
    return n * (n - 1) / 2;
}
  
// Function to print the given
// pattern
static void BSpattern(int N)
{
    int Val = 0, Pthree = 0,
        cnt = 0, initial = -1;
  
    String s = "**";
  
    // Iterate over [0, N - 1]
    for(int i = 0; i < N; i++)
    {
        cnt = 0;
          
        // Sub-Pattern - 1
        if (i > 0)
        {
            Console.Write(s);
            s += "**";
        }
  
        // Sub-Pattern - 2
        for(int j = i; j < N; j++)
        {
              
            // Count the number of element
            // in rows and sub-pattern 2
            // and 3 will have same rows
            if (i > 0)
            {
                cnt++;
            }
              
            // Increment Val to print the
            // series 1, 2, 3, 4, 5 ...
            Console.Write(++Val);
            Console.Write("0");
        }
  
        // To get the first element of sub
        // pattern 3 find the sum of first N-1
        // elements first N-1 elements in row1
        // previous of Sub-Pattern 2
  
        // Finally, add the (N-1)th element
        // i.e., 5 and increment it by 1
        if (i == 0)
        {
            int Sumbeforelast = sum(Val) * 2;
            Pthree = Val + Sumbeforelast + 1;
            initial = Pthree;
        }
  
        // Initial is used to give the initial
        // value of the row in Sub-Pattern 3
        initial = initial - cnt;
  
        Pthree = initial;
  
        // Sub-Pattern 3
        for(int k = i; k < N; k++)
        {
            Console.Write(Pthree++);
  
            // Skip printing zero at the last
            if (k != N - 1)
            {
                Console.Write("0");
            }
        }
        Console.WriteLine();
    }
}
  
// Driver code
public static void Main(String[] args)
{
      
    // Given N
    int N = 5;
      
    // Function call
    BSpattern(N);
}
}
  
// This code is contributed by shikhasingrajput

Javascript




<script>
//Javascript implementation to print
// the given pattern
 
// Function to find the sum of
// N integers from 1 to N
function sum( n)
{
    return n * parseInt((n - 1) / 2);
}
 
// Function to print the given
// pattern
function BSpattern( N)
{
    var Val = 0, Pthree = 0,
        cnt = 0, initial;
 
    var s = "**";
 
    // Iterate over [0, N - 1]
    for (var i = 0; i < N; i++) {
        cnt = 0;
 
        // Sub-Pattern - 1
        if (i > 0) {
            document.write( s);
            s += "**";
        }
 
        // Sub-Pattern - 2
        for (var j = i; j < N; j++) {
 
            // Count the number of element
            // in rows and sub-pattern 2 and 3
            // will have same rows
            if (i > 0) {
                cnt++;
            }
            // Increment Val to print the
            // series 1, 2, 3, 4, 5 ...
            document.write( ++Val);
            document.write( 0);
        }
 
        // To get the first element of sub
        // pattern 3 find the sum of first N-1
        // elements first N-1 elements in row1
        // previous of Sub-Pattern 2
 
        // Finally, add the (N-1)th element
        // i.e., 5 and increment it by 1
        if (i == 0) {
            var Sumbeforelast = sum(Val) * 2;
            Pthree = Val + Sumbeforelast + 1;
            initial = Pthree;
        }
 
        // Initial is used to give the initial
        // value of the row in Sub-Pattern 3
        initial = initial - cnt;
 
        Pthree = initial;
 
        // Sub-Pattern 3
        for (var k = i; k < N; k++) {
 
            document.write(Pthree++);
 
            // Skip printing zero at the last
            if (k != N - 1) {
                document.write( 0);
            }
        }
 
        document.write( "<br>");
    }
}
 
// Given N
var N = 5;
// Function Call
BSpattern(N);
 
// This code is contributed by SoumikMondal
</script>
Output: 
102030405026027028029030
**6070809022023024025
****10011012019020021
******13014017018
********15016

 

Time Complexity: O(N2) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :