# Program to print prime numbers from 1 to N.

• Difficulty Level : Easy
• Last Updated : 14 Sep, 2022

Given a number N, the task is to print the prime numbers from 1 to N.
Examples:

```Input: N = 10
Output: 2, 3, 5, 7

Input: N = 5
Output: 2, 3, 5 ```

Algorithm:

• First, take the number N as input.
• Then use a for loop to iterate the numbers from 1 to N
• Then check for each number to be a prime number. If it is a prime number, print it.

Approach 1:  Now, according to formal definition, a number ‘n’ is prime if it is not divisible by any number other than 1 and n. In other words a number is prime if it is not divisible by any number from 2 to n-1.

Below is the implementation of the above approach:

## C++

 `// C++ program to display Prime numbers till N``#include ``using` `namespace` `std;`` ` `// function to check if a given number is prime``bool` `isPrime(``int` `n)``{``    ``// since 0 and 1 is not prime return false.``    ``if` `(n == 1 || n == 0)``        ``return` `false``;`` ` `    ``// Run a loop from 2 to n-1``    ``for` `(``int` `i = 2; i < n; i++) {``        ``// if the number is divisible by i, then n is not a``        ``// prime number.``        ``if` `(n % i == 0)``            ``return` `false``;``    ``}``    ``// otherwise, n is prime number.``    ``return` `true``;``}`` ` `// Driver code``int` `main()``{``    ``int` `N = 100;`` ` `    ``// check for every number from 1 to N``    ``for` `(``int` `i = 1; i <= N; i++) {``        ``// check if current number is prime``        ``if` `(isPrime(i))``            ``cout << i << ``" "``;``    ``}`` ` `    ``return` `0;``}`

## C

 `// C program to display Prime numbers till N``#include ``#include `` ` `// function to check if a given number is prime``bool` `isPrime(``int` `n)``{``    ``// since 0 and 1 is not prime return false.``    ``if` `(n == 1 || n == 0)``        ``return` `false``;`` ` `    ``// Run a loop from 2 to n-1``    ``for` `(``int` `i = 2; i < n; i++) {``        ``// if the number is divisible by i, then n is not a``        ``// prime number.``        ``if` `(n % i == 0)``            ``return` `false``;``    ``}``    ``// otherwise, n is prime number.``    ``return` `true``;``}`` ` `// Driver code``int` `main()``{``    ``int` `N = 100;`` ` `    ``// check for every number from 1 to N``    ``for` `(``int` `i = 1; i <= N; i++) {``        ``// check if current number is prime``        ``if` `(isPrime(i))``            ``printf``(``"%d "``, i);``    ``}`` ` `    ``return` `0;``}`` ` `// This code is contributed by Sania Kumari Gupta`

## Java

 `// Java program to display Prime numbers till N``class` `GFG ``{``      ``//function to check if a given number is prime``     ``static` `boolean` `isPrime(``int` `n){``          ``//since 0 and 1 is not prime return false.``          ``if``(n==``1``||n==``0``)``return` `false``;``   ` `          ``//Run a loop from 2 to n-1``          ``for``(``int` `i=``2``; i

## Python3

 `# Python3 program to display Prime numbers till N`` ` `#function to check if a given number is prime``def` `isPrime(n):``  ``#since 0 and 1 is not prime return false.``  ``if``(n``=``=``1` `or` `n``=``=``0``):``    ``return` `False``   ` `  ``#Run a loop from 2 to n-1``  ``for` `i ``in` `range``(``2``,n):``    ``#if the number is divisible by i, then n is not a prime number.``    ``if``(n``%``i``=``=``0``):``      ``return` `False``   ` `  ``#otherwise, n is prime number.``  ``return` `True`` ` ` ` ` ` `# Driver code``N ``=` `100``;``#check for every number from 1 to N``for` `i ``in` `range``(``1``,N``+``1``):``  ``#check if current number is prime``  ``if``(isPrime(i)):``    ``print``(i,end``=``" "``)`

## C#

 `// C# program to display Prime numbers till N``using` `System;``     ` `class` `GFG ``{``   ` `     ``//function to check if a given number is prime``     ``static` `bool` `isPrime(``int` `n){``        ``//since 0 and 1 is not prime return false.``        ``if``(n==1||n==0) ``return` `false``;`` ` `        ``//Run a loop from 2 to n-1``        ``for``(``int` `i=2; i

## Javascript

 ``

Output

`2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 `

Time Complexity: O(N^2),

Auxiliary Space: O(1)

Approach 2:  For checking if a number is prime or not do we really need to iterate through all the number from 2 to n-1? We already know that a number ‘n’ cannot be divided by any number greater than ‘n/2’. So, according to this logic we only need to iterate through 2 to n/2 since number greater than n/2 cannot divide n.

## C++

 `// C++ program to display Prime numbers till N``#include ``using` `namespace` `std;`` ` `//function to check if a given number is prime``bool` `isPrime(``int` `n){``    ``//since 0 and 1 is not prime return false.``    ``if``(n==1||n==0) ``return` `false``;`` ` `    ``//Run a loop from 2 to n/2.``    ``for``(``int` `i=2; i<=n/2; i++) {``          ``// if the number is divisible by i, then n is not a prime number.``          ``if``(n%i==0) ``return` `false``;``    ``}``    ``//otherwise, n is prime number.``    ``return` `true``;``}`` ` ` ` `// Driver code``int` `main()``{``    ``int` `N = 100;`` ` `    ``//check for every number from 1 to N``      ``for``(``int` `i=1; i<=N; i++){``        ``//check if current number is prime``        ``if``(isPrime(i)) {``          ``cout << i << ``" "``;``        ``}``    ``}`` ` `    ``return` `0;``}`

## Java

 `// Java program to display ``// Prime numbers till N``class` `GFG ``{``     ``//function to check if a given number is prime``     ``static` `boolean` `isPrime(``int` `n){``          ``//since 0 and 1 is not prime return false.``          ``if``(n==``1``||n==``0``) ``return` `false``;`` ` `        ``//Run a loop from 2 to n-1``        ``for``(``int` `i=``2``; i<=n/``2``; i++){``            ``// if the number is divisible by i, then n is not a prime number.``            ``if``(n%i==``0``)``return` `false``;``        ``}``        ``//otherwise, n is prime number.``        ``return` `true``;``    ``}``     ` ` ` `    ``// Driver code ``    ``public` `static` `void` `main (String[] args) ``    ``{ ``        ``int` `N = ``100``; ``        ``//check for every number from 1 to N``        ``for``(``int` `i=``1``; i<=N; i++){``            ``//check if current number is prime``            ``if``(isPrime(i)) {``              ``System.out.print(i + ``" "``);``            ``}``        ``}`` ` `    ``}``}`

## Python3

 `# Python3 program to display Prime numbers till N`` ` `#function to check if a given number is prime``def` `isPrime(n):``  ``#since 0 and 1 is not prime return false.``  ``if``(n``=``=``1` `or` `n``=``=``0``):``    ``return` `False``   ` `  ``#Run a loop from 2 to n/2``  ``for` `i ``in` `range``(``2``,(n``/``/``2``)``+``1``):``    ``#if the number is divisible by i, then n is not a prime number.``    ``if``(n``%``i``=``=``0``):``      ``return` `False``   ` `  ``#otherwise, n is prime number.``  ``return` `True`` ` ` ` ` ` `# Driver code``N ``=` `100``;``#check for every number from 1 to N``for` `i ``in` `range``(``1``,N``+``1``):``  ``#check if current number is prime``  ``if``(isPrime(i)):``    ``print``(i,end``=``" "``)`

## C#

 `// C# program to display ``// Prime numbers till N``using` `System;``     ` `class` `GFG ``{``   ` ` ``//function to check if a given number is prime`` ``static` `bool` `isPrime(``int` `n){``      ``//since 0 and 1 is not prime return false.``     ``if``(n==1||n==0)``return` `false``;``   ` `      ``//Run a loop from 2 to n/2.``      ``for``(``int` `i=2; i<=n/2; i++){``        ``// if the number is divisible by i, then n is not a prime number.``        ``if``(n%i==0)``return` `false``;``      ``}``  ``//otherwise, n is prime number.``  ``return` `true``;``}`` ` `// Driver code ``public` `static` `void` `Main (String[] args) ``{ ``    ``int` `N = 100; ``    ``//check for every number from 1 to N``      ``for``(``int` `i=1; i<=N; i++){``      ``//check if current number is prime``      ``if``(isPrime(i)) {``        ``Console.Write(i + ``" "``); ``      ``}``    ``}``     ` `}``}`` ` `// This code is contributed by Rajput-Ji`

## Javascript

 ``

Output

`2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 `

Time Complexity: O(N2),

Auxiliary Space: O(1), since no extra space has been taken.

Approach 3: If a number ‘n’ is not divided by any number less than or equals to the square root of n then, it will not be divided by any other number greater than the square root of n. So, we only need to check up to the square root of n.

## C++

 `// C++ program to display Prime numbers till N``#include ``using` `namespace` `std;`` ` `//function to check if a given number is prime``bool` `isPrime(``int` `n){``  ``//since 0 and 1 is not prime return false.``  ``if``(n==1||n==0)``return` `false``;``   ` `  ``//Run a loop from 2 to square root of n.``  ``for``(``int` `i=2; i*i<=n; i++){``    ``// if the number is divisible by i, then n is not a prime number.``    ``if``(n%i==0)``return` `false``;``  ``}``  ``//otherwise, n is prime number.``  ``return` `true``;``}`` ` ` ` `// Driver code``int` `main()``{``    ``int` `N = 100;`` ` `    ``//check for every number from 1 to N``      ``for``(``int` `i=1; i<=N; i++){``      ``//check if current number is prime``      ``if``(isPrime(i)) {``        ``cout << i << ``" "``;``      ``}``    ``}`` ` `    ``return` `0;``}`

## Java

 `// Java program to display ``// Prime numbers till N``class` `GFG ``{``  ``//function to check if a given number is prime`` ``static` `boolean` `isPrime(``int` `n){``  ``//since 0 and 1 is not prime return false.``  ``if``(n==``1``||n==``0``)``return` `false``;``   ` `  ``//Run a loop from 2 to square root of n``  ``for``(``int` `i=``2``; i*i<=n; i++){``    ``// if the number is divisible by i, then n is not a prime number.``    ``if``(n%i==``0``)``return` `false``;``  ``}``  ``//otherwise, n is prime number.``  ``return` `true``;``}``     ` ` ` `// Driver code ``public` `static` `void` `main (String[] args) ``{ ``    ``int` `N = ``100``; ``        ``//check for every number from 1 to N``      ``for``(``int` `i=``1``; i<=N; i++){``      ``//check if current number is prime``      ``if``(isPrime(i)) {``        ``System.out.print(i + ``" "``);``      ``}``    ``}``     ` `}``}`

## Python3

 `# Python3 program to display Prime numbers till N`` ` `#function to check if a given number is prime``def` `isPrime(n):``  ``#since 0 and 1 is not prime return false.``  ``if``(n``=``=``1` `or` `n``=``=``0``):``    ``return` `False``   ` `  ``#Run a loop from 2 to square root of n.``  ``for` `i ``in` `range``(``2``,``int``(n``*``*``(``1``/``2``))``+``1``):``    ``#if the number is divisible by i, then n is not a prime number.``    ``if``(n``%``i``=``=``0``):``      ``return` `False``   ` `  ``#otherwise, n is prime number.``  ``return` `True`` ` ` ` ` ` `# Driver code``N ``=` `100``;``#check for every number from 1 to N``for` `i ``in` `range``(``1``,N``+``1``):``  ``#check if current number is prime``  ``if``(isPrime(i)):``    ``print``(i,end``=``" "``)`

## C#

 `// C# program to display ``// Prime numbers till N``using` `System;``     ` `class` `GFG ``{``   ` ` ``//function to check if a given number is prime`` ``static` `bool` `isPrime(``int` `n){``      ``//since 0 and 1 is not prime return false.``     ``if``(n==1||n==0)``return` `false``;``   ` `      ``//Run a loop from 2 to square root of n.``      ``for``(``int` `i=2; i*i<=n; i++){``        ``// if the number is divisible by i, then n is not a prime number.``        ``if``(n%i==0)``return` `false``;``      ``}``  ``//otherwise, n is prime number.``  ``return` `true``;``}`` ` `// Driver code ``public` `static` `void` `Main (String[] args) ``{ ``    ``int` `N = 100; ``    ``//check for every number from 1 to N``      ``for``(``int` `i=1; i<=N; i++){``      ``//check if current number is prime``      ``if``(isPrime(i)) {``        ``Console.Write(i + ``" "``); ``      ``}``    ``}``     ` `}``}`` ` `// This code is contributed by Rajput-Ji`

## Javascript

 ``

Output

`2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 `

Time Complexity: O(N^(3/2)),

Auxiliary Space: O(1)

You can further optimize the time complexity to O(n*log(log(n))). Check Sieve of Eratosthenes.

My Personal Notes arrow_drop_up