Given an integer N. The task is to find the first N Fibonacci numbers.

Examples :
Input: n = 3
Output: 0 1 1
Input: n = 7
Output: 0 1 1 2 3 5 8
Program to print first ‘n’ Fibonacci Numbers using recursion:
Below is the idea to solve the problem:
Use recursion to find nth fibonacci number by calling for n-1 and n-2 and adding their return value. The base case will be if n=0 or n=1 then the fibonacci number will be 0 and 1 respectively.
Follow the below steps to Implement the idea:
- Build a recursive function that takes integer N as a parameter.
- If N = 0 fibonacci number will be 0.
- Else if n = 1 Fibonacci number will be 1.
- Else return value for func(n-1) + func(n-2).
Below is the Implementation of the above approach:
C++
#include <iostream>
using namespace std;
int fibonacci_numbers( int n)
{
if (n == 0){
return 0;
}
else if (n == 1){
return 1;
}
else {
return fibonacci_numbers(n-2) + fibonacci_numbers(n-1);
}
}
int main() {
int n = 7;
for ( int i = 0; i < n; i++)
{
cout << fibonacci_numbers(i) << " " ;
}
return 0;
}
|
Java
import java.io.*;
class GFG {
public static int fibonacci_numbers( int n)
{
if (n == 0 ){
return 0 ;
}
else if (n == 1 ){
return 1 ;
}
else {
return fibonacci_numbers(n- 2 ) + fibonacci_numbers(n- 1 );
}
}
public static void main (String[] args) {
int n = 7 ;
for ( int i = 0 ; i < n; i++){
System.out.print(fibonacci_numbers(i)+ " " );
}
}
}
|
Python3
def fibonacci_numbers(num):
if num = = 0 :
return 0
elif num = = 1 :
return 1
else :
return fibonacci_numbers(num - 2 ) + fibonacci_numbers(num - 1 )
n = 7
for i in range ( 0 , n):
print (fibonacci_numbers(i), end = " " )
|
C#
using System;
class GFG {
public static int fibonacci_numbers( int n)
{
if (n == 0){
return 0;
}
else if (n == 1){
return 1;
}
else {
return fibonacci_numbers(n-2) + fibonacci_numbers(n-1);
}
}
public static void Main ( string [] args) {
int n = 7;
for ( int i = 0; i < n; i++){
Console.Write(fibonacci_numbers(i)+ " " );
}
}
}
|
PHP
<?php
function fibonacci_numbers( $num )
{
if ( $num == 0){
return 0;
}
elseif ( $num == 1){
return 1;
}
else {
return (fibonacci_numbers( $num -2)+fibonacci_numbers( $num -1));
}
}
$num =7;
for ( $i = 0; $i < $num ; $i ++){
echo fibonacci_numbers( $i );
echo " " ;
}
?>
|
Javascript
<script>
function fibonacci_numbers(n) {
if (n == 0) {
return 0;
}
else if (n == 1) {
return 1;
}
else {
return fibonacci_numbers(n - 2) + fibonacci_numbers(n - 1);
}
}
let n = 7;
for (let i = 0; i < n; i++) {
document.write(fibonacci_numbers(i) + " " );
}
</script>
|
Time Complexity: O(n*2n)
Auxiliary Space: O(n), For recursion call stack.
An iterative approach to print first ‘n’ Fibonacci numbers:
Below is the idea to solve the problem
- Use two variables f1 and f2 and initialize with 0 and 1 respectively because the 1st and 2nd elements of the Fibonacci series are 0 and 1 respectively.
- Iterate from 1 to n-1 and print f2 then store f2 in temp variable and update f2 with f2 + f1 and f1 as f2.
Below is the Implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void printFibonacciNumbers( int n)
{
int f1 = 0, f2 = 1, i;
if (n < 1)
return ;
cout << f1 << " " ;
for (i = 1; i < n; i++) {
cout << f2 << " " ;
int next = f1 + f2;
f1 = f2;
f2 = next;
}
}
int main()
{
printFibonacciNumbers(7);
return 0;
}
|
C
#include <stdio.h>
void printFibonacciNumbers( int n)
{
int f1 = 0, f2 = 1, i;
if (n < 1)
return ;
printf ( "%d " , f1);
for (i = 1; i < n; i++) {
printf ( "%d " , f2);
int next = f1 + f2;
f1 = f2;
f2 = next;
}
}
int main()
{
printFibonacciNumbers(7);
return 0;
}
|
Java
class Test {
static void printFibonacciNumbers( int n)
{
int f1 = 0 , f2 = 1 , i;
System.out.print(f1 + " " );
if (n < 1 )
return ;
for (i = 1 ; i < n; i++) {
System.out.print(f2 + " " );
int next = f1 + f2;
f1 = f2;
f2 = next;
}
}
public static void main(String[] args)
{
printFibonacciNumbers( 7 );
}
}
|
Python3
def printFibonacciNumbers(n):
f1 = 0
f2 = 1
if (n < 1 ):
return
print (f1, end = " " )
for x in range ( 1 , n):
print (f2, end = " " )
next = f1 + f2
f1 = f2
f2 = next
printFibonacciNumbers( 7 )
|
C#
using System;
class Test {
static void printFibonacciNumbers( int n)
{
int f1 = 0, f2 = 1, i;
if (n < 1)
return ;
Console.Write(f1 + " " );
for (i = 1; i < n; i++) {
Console.Write(f2 + " " );
int next = f1 + f2;
f1 = f2;
f2 = next;
}
}
public static void Main() { printFibonacciNumbers(7); }
}
|
PHP
<?php
function printFibonacciNumbers( $n )
{
$f1 = 0;
$f2 = 1;
$i ;
if ( $n < 1)
return ;
echo ( $f1 );
echo ( " " );
for ( $i = 1; $i < $n ; $i ++)
{
echo ( $f2 );
echo ( " " );
$next = $f1 + $f2 ;
$f1 = $f2 ;
$f2 = $next ;
}
}
printFibonacciNumbers(7);
?>
|
Javascript
<script>
function printFibonacciNumbers(n)
{
let f1 = 0, f2 = 1, i;
if (n < 1)
return ;
document.write(f1 + " " );
for (i = 1; i < n; i++) {
document.write(f2 + " " );
let next = f1 + f2;
f1 = f2;
f2 = next;
}
}
printFibonacciNumbers(7);
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
16 Feb, 2023
Like Article
Save Article