Program to print an array in Pendulum Arrangement with constant space
Given an array arr[] of integers, the task is to arrange them in a way similar to the to-and-fro movement of a Pendulum without using any extra space.
Pendulum Arrangement:
- The minimum element out of the list of integers must come in the center position of the array.
- The number in the ascending order next to the minimum, goes to the right, the next higher number goes to the left of minimum number and it continues.
- As higher numbers are reached, one goes to one side in a to-and-fro manner similar to that of a Pendulum.
Examples:
Input: arr[] = {2, 3, 5, 1, 4}
Output: 5 3 1 2 4
The minimum element is 1, so it is moved to the middle.
The next higher element 2 is moved to the right of the
middle element while the next higher element 3 is
moved to the left of the middle element and
this process is continued.
Input: arr[] = {11, 2, 4, 55, 6, 8}
Output: 11 6 2 4 8 55
Approach: An approach which uses an auxiliary array has been discussed in this article. Here’s an approach without using extra space:
- Sort the given array.
- Move all the odd position element in the right side of the array.
- Reverse the element from 0 to (n-1)/2 position of the array.
For example, let arr[] = {2, 3, 5, 1, 4}
Sorted array will be arr[] = {1, 2, 3, 4, 5}.
After moving all odd index position elements to the right,
arr[] = {1, 3, 5, 2, 4} (1 and 3 are the odd index positions)
After reversing elements from 0 to (n – 1) / 2,
arr[] = {5, 3, 1, 2, 4} which is the required array.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to print the Pendulum // arrangement of the given array void pendulumArrangement( int arr[], int n) { // Sort the array sort(arr, arr + n); int odd, temp, in, pos; // pos stores the index of // the last element of the array pos = n - 1; // odd stores the last odd index in the array if (n % 2 == 0) odd = n - 1; else odd = n - 2; // Move all odd index positioned // elements to the right while (odd > 0) { temp = arr[odd]; in = odd; // Shift the elements by one position // from odd to pos while (in != pos) { arr[in] = arr[in + 1]; in++; } arr[in] = temp; odd = odd - 2; pos = pos - 1; } // Reverse the element from 0 to (n - 1) / 2 int start = 0, end = (n - 1) / 2; for (; start < end; start++, end--) { temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; } // Printing the pendulum arrangement for ( int i = 0; i < n; i++) cout << arr[i] << " " ; } // Driver code int main() { int arr[] = { 11, 2, 4, 55, 6, 8 }; int n = sizeof (arr) / sizeof (arr[0]); pendulumArrangement(arr, n); return 0; } |
Java
// Java implementation of the approach import java.util.Arrays; import java.io.*; class GFG { // Function to print the Pendulum // arrangement of the given array static void pendulumArrangement( int arr[], int n) { // Sort the array // sort(arr, arr + n); Arrays.sort(arr); int odd, temp, in, pos; // pos stores the index of // the last element of the array pos = n - 1 ; // odd stores the last odd index in the array if (n % 2 == 0 ) odd = n - 1 ; else odd = n - 2 ; // Move all odd index positioned // elements to the right while (odd > 0 ) { temp = arr[odd]; in = odd; // Shift the elements by one position // from odd to pos while (in != pos) { arr[in] = arr[in + 1 ]; in++; } arr[in] = temp; odd = odd - 2 ; pos = pos - 1 ; } // Reverse the element from 0 to (n - 1) / 2 int start = 0 , end = (n - 1 ) / 2 ; for (; start < end; start++, end--) { temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; } // Printing the pendulum arrangement for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); } // Driver code public static void main(String[] args) { int arr[] = { 11 , 2 , 4 , 55 , 6 , 8 }; int n = arr.length; pendulumArrangement(arr, n); } } // This code is contributed by akt_mit |
Python3
# Python 3 implementation of the approach # Function to print the Pendulum # arrangement of the given array def pendulumArrangement(arr, n): # Sort the array arr.sort(reverse = False ) # pos stores the index of # the last element of the array pos = n - 1 # odd stores the last odd index in the array if (n % 2 = = 0 ): odd = n - 1 else : odd = n - 2 # Move all odd index positioned # elements to the right while (odd > 0 ): temp = arr[odd] in1 = odd # Shift the elements by one position # from odd to pos while (in1 ! = pos): arr[in1] = arr[in1 + 1 ] in1 + = 1 arr[in1] = temp odd = odd - 2 pos = pos - 1 # Reverse the element from 0 to (n - 1) / 2 start = 0 end = int ((n - 1 ) / 2 ) while (start < end): temp = arr[start] arr[start] = arr[end] arr[end] = temp start + = 1 end - = 1 # Printing the pendulum arrangement for i in range (n): print (arr[i], end = " " ) # Driver code if __name__ = = '__main__' : arr = [ 11 , 2 , 4 , 55 , 6 , 8 ] n = len (arr) pendulumArrangement(arr, n) # This code is contributed by # Surendra_Gangwar |
C#
// C# implementation of the approach using System; class GFG { // Function to print the Pendulum // arrangement of the given array static void pendulumArrangement( int [] arr, int n) { // Sort the array // sort(arr, arr + n); Array.Sort(arr); int odd, temp, p, pos; // pos stores the index of // the last element of the array pos = n - 1; // odd stores the last odd index in the array if (n % 2 == 0) odd = n - 1; else odd = n - 2; // Move all odd index positioned // elements to the right while (odd > 0) { temp = arr[odd]; p = odd; // Shift the elements by one position // from odd to pos while (p != pos) { arr[p] = arr[p + 1]; p++; } arr[p] = temp; odd = odd - 2; pos = pos - 1; } // Reverse the element from 0 to (n - 1) / 2 int start = 0, end = (n - 1) / 2; for (; start < end; start++, end--) { temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; } // Printing the pendulum arrangement for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); } // Driver code public static void Main() { int [] arr = { 11, 2, 4, 55, 6, 8 }; int n = arr.Length; pendulumArrangement(arr, n); } } // This code is contributed by ChitraNayal |
PHP
<?php // PHP implementation of the approach // Function to print the Pendulum // arrangement of the given array function pendulumArrangement( $arr , $n ) { // Sort the array sort( $arr ) ; // pos stores the index of // the last element of the array $pos = $n - 1; // odd stores the last odd index in the array if ( $n % 2 == 0) $odd = $n - 1; else $odd = $n - 2; // Move all odd index positioned // elements to the right while ( $odd > 0) { $temp = $arr [ $odd ]; $in = $odd ; // Shift the elements by one position // from odd to pos while ( $in != $pos ) { $arr [ $in ] = $arr [ $in + 1]; $in ++; } $arr [ $in ] = $temp ; $odd = $odd - 2; $pos = $pos - 1; } // Reverse the element from 0 to (n - 1) / 2 $start = 0; $end = floor (( $n - 1) / 2); for (; $start < $end ; $start ++, $end --) { $temp = $arr [ $start ]; $arr [ $start ] = $arr [ $end ]; $arr [ $end ] = $temp ; } // Printing the pendulum arrangement for ( $i = 0; $i < $n ; $i ++) echo $arr [ $i ], " " ; } // Driver code $arr = array ( 11, 2, 4, 55, 6, 8 ); $n = count ( $arr ); pendulumArrangement( $arr , $n ); // This code is contributed by AnkitRai01 ?> |
Javascript
<script> // Javascript implementation of the approach // Function to print the Pendulum // arrangement of the given array function pendulumArrangement(arr, n) { // Sort the array // sort(arr, arr + n); arr.sort( function (a, b){ return a - b}); let odd, temp, p, pos; // pos stores the index of // the last element of the array pos = n - 1; // odd stores the last odd index in the array if (n % 2 == 0) odd = n - 1; else odd = n - 2; // Move all odd index positioned // elements to the right while (odd > 0) { temp = arr[odd]; p = odd; // Shift the elements by one position // from odd to pos while (p != pos) { arr[p] = arr[p + 1]; p++; } arr[p] = temp; odd = odd - 2; pos = pos - 1; } // Reverse the element from 0 to (n - 1) / 2 let start = 0, end = parseInt((n - 1) / 2, 10); for (; start < end; start++, end--) { temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; } // Printing the pendulum arrangement for (let i = 0; i < n; i++) document.write(arr[i] + " " ); } let arr = [ 11, 2, 4, 55, 6, 8 ]; let n = arr.length; pendulumArrangement(arr, n); </script> |
11 6 2 4 8 55
Time Complexity: O(n2)
Auxiliary Space: O(1)
Please Login to comment...