Program to Interchange Diagonals of Matrix

Given a square matrix of order n*n, you have to interchange the elements of both diagonals.

Examples :

Input : matrix[][] = {1, 2, 3,
                      4, 5, 6,
                      7, 8, 9} 
Output : matrix[][] = {3, 2, 1,
                       4, 5, 6,
                       9, 8, 7} 

Input : matrix[][] = {4,  2,  3,  1,
                      5,  7,  6,  8,
                      9, 11, 10, 12,
                     16, 14, 15, 13} 
Output : matrix[][] = {1,  2,  3,  4,
                       5,  6,  7,  8,
                       9, 10, 11, 12,
                      11, 14, 15, 16}

Expalnation : Idea behind interchanging diagonals of square matrix is simple. Iterate from 0 to n-1 and for each iteration you have to swap a[i][i] and a[i][n-i-1].



Time complexity : O(n)

C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to interchange 
// the diagonals of matrix
#include<bits/stdc++.h>
using namespace std;
  
#define N 3
  
// Function to interchange diagonals
void interchangeDiagonals(int array[][N])
{
    // swap elements of diagonal
    for (int i = 0; i < N; ++i)
    if (i != N / 2)
    swap(array[i][i], array[i][N - i - 1]);
  
    for (int i = 0; i < N; ++i)
    {
    for (int j = 0; j < N; ++j)
            printf(" %d", array[i][j]);
    printf("\n");
    }
}
  
// Driver Code
int main()
{
    int array[N][N] = {4, 5, 6,
                    1, 2, 3,
                    7, 8, 9};
    interchangeDiagonals(array);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to interchange 
// the diagonals of matrix
import java.io.*;
  
class GFG 
{
    public static int N = 3;
      
    // Function to interchange diagonals
    static void interchangeDiagonals(int array[][])
    {
        // swap elements of diagonal
        for (int i = 0; i < N; ++i)
            if (i != N / 2)
            {
                int temp = array[i][i];
                array[i][i] = array[i][N - i - 1];
                array[i][N - i - 1] = temp;
            }
  
        for (int i = 0; i < N; ++i)
        {
            for (int j = 0; j < N; ++j)
                System.out.print(array[i][j]+" ");
            System.out.println();
        }
    }
      
    // Driver Code
    public static void main (String[] args) 
    {
        int array[][] = { {4, 5, 6},
                        {1, 2, 3},
                        {7, 8, 9}
                        };
        interchangeDiagonals(array);
    }
}
  
// This code is contributed by Pramod Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to interchange 
// the diagonals of matrix
using System;
  
class GFG 
{
    public static int N = 3;
      
    // Function to interchange diagonals
    static void interchangeDiagonals(int [,]array)
    {
        // swap elements of diagonal
        for (int i = 0; i < N; ++i)
            if (i != N / 2)
            {
                int temp = array[i, i];
                array[i, i] = array[i, N - i - 1];
                array[i, N - i - 1] = temp;
            }
  
        for (int i = 0; i < N; ++i)
        {
            for (int j = 0; j < N; ++j)
                Console.Write(array[i, j]+" ");
            Console.WriteLine();
        }
    }
      
    // Driver Code
    public static void Main () 
    {
        int [,]array = { {4, 5, 6},
                        {1, 2, 3},
                        {7, 8, 9}
                        };
        interchangeDiagonals(array);
    }
}
  
// This code is contributed by vt_m.

chevron_right



Output:


 6 5 4
 1 2 3
 9 8 7

This article is contributed by Shivam Pradhan (anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : vt_m



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.