# Program to find value of 1^k + 2^k + 3^k + … + n^k

Given two positive integers N and K. The task is to evaluate the value of 1K + 2 K + 3K + … + NK.

Examples

Input: N = 3, K = 4
Output: 98
Explanation:
∑(x4) = 14 + 24 + 34, where 1 ≤ x ≤ N
∑(x4) = 1 + 16 + 81
∑(x4) = 98

Input: N = 8, K = 4
Output: 8772

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

1. The idea is to find the value of xK using pow() function. (where x is from 1 to N).
2. The required sum is the summation of all values calculated above.

Below is the implementation of the above approach:

## C++

 `// C++ Program to find the value ` `// 1^K + 2^K + 3^K + .. + N^K ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find value of ` `// 1^K + 2^K + 3^K + .. + N^K ` `int` `findSum(``int` `N, ``int` `k) ` `{ ` `    ``// Initialise sum to 0 ` `    ``int` `sum = 0; ` `    ``for` `(``int` `i = 1; i <= N; i++) { ` ` `  `        ``// Find the value of ` `        ``// pow(i, 4) and then ` `        ``// add it to the sum ` `        ``sum += ``pow``(i, k); ` `    ``} ` ` `  `    ``// Return the sum ` `    ``return` `sum; ` `} ` ` `  `// Drivers Code ` `int` `main() ` `{ ` `    ``int` `N = 8, k = 4; ` ` `  `    ``// Function call to ` `    ``// find the sum ` `    ``cout << findSum(N, k) << endl; ` `    ``return` `0; ` `} `

## Java

 `// Java Program to find the value ` `// 1^K + 2^K + 3^K + .. + N^K ` `class` `GFG { ` `     `  `    ``// Function to find value of ` `    ``// 1^K + 2^K + 3^K + .. + N^K ` `    ``static` `int` `findSum(``int` `N, ``int` `k) ` `    ``{ ` `        ``// Initialise sum to 0 ` `        ``int` `sum = ``0``; ` `        ``for` `(``int` `i = ``1``; i <= N; i++) { ` `     `  `            ``// Find the value of ` `            ``// pow(i, 4) and then ` `            ``// add it to the sum ` `            ``sum += (``int``)Math.pow(i, k); ` `        ``} ` `     `  `        ``// Return the sum ` `        ``return` `sum; ` `    ``} ` `     `  `    ``// Drivers Code ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{ ` `        ``int` `N = ``8``, k = ``4``; ` `     `  `        ``// Function call to ` `        ``// find the sum ` `        ``System.out.println(findSum(N, k)); ` `    ``} ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## C#

 `// C# Program to find the value ` `// 1^K + 2^K + 3^K + .. + N^K ` ` `  `using` `System; ` ` `  `public` `class` `GFG { ` `     `  `    ``// Function to find value of ` `    ``// 1^K + 2^K + 3^K + .. + N^K ` `    ``static` `int` `findSum(``int` `N, ``int` `k) ` `    ``{ ` `        ``// Initialise sum to 0 ` `        ``int` `sum = 0; ` `        ``for` `(``int` `i = 1; i <= N; i++) { ` `     `  `            ``// Find the value of ` `            ``// pow(i, 4) and then ` `            ``// add it to the sum ` `            ``sum += (``int``)Math.Pow(i, k); ` `        ``} ` `     `  `        ``// Return the sum ` `        ``return` `sum; ` `    ``} ` `     `  `    ``// Drivers Code ` `    ``public` `static` `void` `Main (``string``[] args)  ` `    ``{ ` `        ``int` `N = 8, k = 4; ` `     `  `        ``// Function call to ` `        ``// find the sum ` `        ``Console.WriteLine(findSum(N, k)); ` `    ``} ` ` `  `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python 3

 `# Python 3 Program to find the value ` `# 1^K + 2^K + 3^K + .. + N^K ` `from` `math ``import` `pow` ` `  `# Function to find value of ` `# 1^K + 2^K + 3^K + .. + N^K ` `def` `findSum(N, k): ` `     `  `    ``# Initialise sum to 0 ` `    ``sum` `=` `0` `    ``for` `i ``in` `range``(``1``, N ``+` `1``, ``1``): ` `         `  `        ``# Find the value of ` `        ``# pow(i, 4) and then ` `        ``# add it to the sum ` `        ``sum` `+``=` `pow``(i, k) ` ` `  `    ``# Return the sum ` `    ``return` `sum` ` `  `# Drives Code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``N ``=` `8` `    ``k ``=` `4` ` `  `    ``# Function call to ` `    ``# find the sum ` `    ``print``(``int``(findSum(N, k))) ` ` `  `# This code is contributed by Surendra_Gangwar `

Output:

```8772
```

Time Complexity: O(N)

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.