Skip to content
Related Articles

Related Articles

Program to find the Type of Triangle from the given Coordinates
  • Difficulty Level : Easy
  • Last Updated : 28 Nov, 2019

We are given coordinates of a triangle. The task is to classify this triangle on the basis of sides and angle.

Examples:

Input: p1 = (3, 0), p2 = (0, 4), p3 = (4, 7)
Output: Right Angle triangle and Isosceles

Input: p1 = (0, 0), p2 = (1, 1), p3 = (1, 2);
Output: Triangle is obtuse and Scalene

Approach:

  • We can solve this problem by first calculating the side length and then classifying on comparing of side lengths. Classification by sides is simple, if all sides are equal, triangle will be equilateral, if any two sides are equal triangle will be Isosceles otherwise it will be Scalene.
  • Now angle can be classified by Pythagoras theorem, if sum of square of two sides is equal to square of the third side, triangle will be right angle, if less triangle will be acute angle else it will be obtuse angle triangle.

Below is written simple code for classification of triangle:

C++






// C/C++ program to classify a given triangle
  
#include <bits/stdc++.h>
using namespace std;
  
struct point {
    int x, y;
    point() {}
    point(int x, int y)
        : x(x), y(y)
    {
    }
};
  
// Utility method to return square of x
int square(int x)
{
    return x * x;
}
  
// Utility method to sort a, b, c; after this
// method a <= b <= c
void order(int& a, int& b, int& c)
{
    int copy[3];
    copy[0] = a;
    copy[1] = b;
    copy[2] = c;
    sort(copy, copy + 3);
    a = copy[0];
    b = copy[1];
    c = copy[2];
}
  
// Utility method to return Square of distance
// between two points
int euclidDistSquare(point p1, point p2)
{
    return square(p1.x - p2.x) + square(p1.y - p2.y);
}
  
// Method to classify side
string getSideClassification(int a, int b, int c)
{
    // if all sides are equal
    if (a == b && b == c)
        return "Equilateral";
  
    // if any two sides are equal
    else if (a == b || b == c)
        return "Isosceles";
  
    else
        return "Scalene";
}
  
// Method to classify angle
string getAngleClassification(int a, int b, int c)
{
    // If addition of sum of square of two side
    // is less, then acute
    if (a + b > c)
        return "acute";
  
    // by pythagoras theorem
    else if (a + b == c)
        return "right";
  
    else
        return "obtuse";
}
  
// Method to classify the triangle by sides and angles
void classifyTriangle(point p1, point p2, point p3)
{
    // Find squares of distances between points
    int a = euclidDistSquare(p1, p2);
    int b = euclidDistSquare(p1, p3);
    int c = euclidDistSquare(p2, p3);
  
    // Sort all squares of distances in increasing order
    order(a, b, c);
  
    cout << "Triangle is "
                + getAngleClassification(a, b, c)
                + " and "
                + getSideClassification(a, b, c)
         << endl;
}
  
// Driver code
int main()
{
    point p1, p2, p3;
    p1 = point(3, 0);
    p2 = point(0, 4);
    p3 = point(4, 7);
    classifyTriangle(p1, p2, p3);
  
    p1 = point(0, 0);
    p2 = point(1, 1);
    p3 = point(1, 2);
    classifyTriangle(p1, p2, p3);
    return 0;
}

Java




// Java program to classify a given triangle
import java.util.*;
class GFG 
{
      
static class point
{
    int x, y;
    point() {}
  
    public point(int x, int y)
    {
        this.x = x;
        this.y = y;
    }
};
  
// Utility method to return square of x
static int square(int x)
{
    return x * x;
}
static int a, b, c;
  
// Utility method to sort a, b, c; after this
// method a <= b <= c
static void order()
{
    int []copy = new int[3];
    copy[0] = a;
    copy[1] = b;
    copy[2] = c;
    Arrays.sort(copy);
    a = copy[0];
    b = copy[1];
    c = copy[2];
}
  
// Utility method to return Square of distance
// between two points
static int euclidDistSquare(point p1, point p2)
{
    return square(p1.x - p2.x) + square(p1.y - p2.y);
}
  
// Method to classify side
static String getSideClassification(int a, 
                                    int b, int c)
{
    // if all sides are equal
    if (a == b && b == c)
        return "Equilateral";
  
    // if any two sides are equal
    else if (a == b || b == c)
        return "Isosceles";
  
    else
        return "Scalene";
}
  
// Method to classify angle
static String getAngleClassification(int a, 
                                     int b, int c)
{
    // If addition of sum of square of two side
    // is less, then acute
    if (a + b > c)
        return "acute";
  
    // by pythagoras theorem
    else if (a + b == c)
        return "right";
  
    else
        return "obtuse";
}
  
// Method to classify the triangle
// by sides and angles
static void classifyTriangle(point p1, 
                             point p2, point p3)
{
    // Find squares of distances between points
    a = euclidDistSquare(p1, p2);
    b = euclidDistSquare(p1, p3);
    c = euclidDistSquare(p2, p3);
  
    // Sort all squares of distances in increasing order
    order();
  
    System.out.println( "Triangle is "
                + getAngleClassification(a, b, c)
                + " and "
                + getSideClassification(a, b, c));
}
  
// Driver code
public static void main(String[] args) 
{
    point p1, p2, p3;
    p1 = new point(3, 0);
    p2 = new point(0, 4);
    p3 = new point(4, 7);
    classifyTriangle(p1, p2, p3);
  
    p1 = new point(0, 0);
    p2 = new point(1, 1);
    p3 = new point(1, 2);
    classifyTriangle(p1, p2, p3);
}
}
  
// This code is contributed by Rajput-Ji

C#




// C# program to classify a given triangle
using System;
      
class GFG 
{
public class point
{
    public int x, y;
    public point() {}
  
    public point(int x, int y)
    {
        this.x = x;
        this.y = y;
    }
};
  
// Utility method to return square of x
static int square(int x)
{
    return x * x;
}
static int a, b, c;
  
// Utility method to sort a, b, c; 
// after this method a <= b <= c
static void order()
{
    int []copy = new int[3];
    copy[0] = a;
    copy[1] = b;
    copy[2] = c;
    Array.Sort(copy);
    a = copy[0];
    b = copy[1];
    c = copy[2];
}
  
// Utility method to return 
// Square of distance between two points
static int euclidDistSquare(point p1, 
                            point p2)
{
    return square(p1.x - p2.x) + 
           square(p1.y - p2.y);
}
  
// Method to classify side
static String getSideClassification(int a, 
                                    int b, int c)
{
    // if all sides are equal
    if (a == b && b == c)
        return "Equilateral";
  
    // if any two sides are equal
    else if (a == b || b == c)
        return "Isosceles";
  
    else
        return "Scalene";
}
  
// Method to classify angle
static String getAngleClassification(int a, 
                                     int b, int c)
{
    // If addition of sum of square of 
    // two side is less, then acute
    if (a + b > c)
        return "acute";
  
    // by pythagoras theorem
    else if (a + b == c)
        return "right";
  
    else
        return "obtuse";
}
  
// Method to classify the triangle
// by sides and angles
static void classifyTriangle(point p1, 
                              point p2,
                              point p3)
{
    // Find squares of distances between points
    a = euclidDistSquare(p1, p2);
    b = euclidDistSquare(p1, p3);
    c = euclidDistSquare(p2, p3);
  
    // Sort all squares of distances 
    // in increasing order
    order();
  
    Console.WriteLine( "Triangle is "
                + getAngleClassification(a, b, c)
                + " and "
                + getSideClassification(a, b, c));
}
  
// Driver code
public static void Main(String[] args) 
{
    point p1, p2, p3;
    p1 = new point(3, 0);
    p2 = new point(0, 4);
    p3 = new point(4, 7);
    classifyTriangle(p1, p2, p3);
  
    p1 = new point(0, 0);
    p2 = new point(1, 1);
    p3 = new point(1, 2);
    classifyTriangle(p1, p2, p3);
}
}
  
// This code is contributed by 29AjayKumar
Output:
Triangle is right and Isosceles
Triangle is obtuse and Scalene

This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

My Personal Notes arrow_drop_up
Recommended Articles
Page :