Program to find the sum of the series 1 + x + x^2+ x^3+ .. + x^n

Given an integer X, the task is to print the series and find the sum of the series 1 + x^{1} + x^{2} + x^{3} + x^{4} ... x^{N}

Examples :

Input: X = 2, N = 5
Output: Sum = 31
1 2 4 8 16

Input: X = 1, N = 10
Output: Sum = 10
1 1 1 1 1 1 1 1 1 1

Approach: The idea is to traverse over the series and compute the sum of the N terms of the series. The Nth term of the series can be computed as:



Nth Term = (N-1)th Term * X

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementatio to find
// sum of series of
// 1 + x^2 + x^3 + ....+ x^n
  
#include <bits/stdc++.h>
  
using namespace std;
  
// Function to find the sum of
// the series and print N terms
// of the given series
double sum(int x, int n)
{
    double i, total = 1.0, multi = x;
  
    // First Term
    cout << total << " ";
  
    // Loop to print the N terms
    // of the series and find their sum
    for (i = 1; i < n; i++) {
  
        total = total + multi;
        cout << multi << " ";
        multi = multi * x;
    }
  
    cout << "\n";
    return total;
}
  
// Driver code
int main()
{
    int x = 2;
    int n = 5;
    cout << fixed
         << setprecision(2)
         << sum(x, n);
    return 0;
}

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C implemenation to find the sum
// of series 1 + x^2 + x^3 + ....+ x^n
  
#include <math.h>
#include <stdio.h>
  
// Function to print the sum
// of the series
double sum(int x, int n)
{
    double i, total = 1.0, multi = x;
  
    // First Term of series
    printf("1 ");
  
    // Loop to find the N
    // terms of the series
    for (i = 1; i < n; i++) {
  
        total = total + multi;
        printf("%.1f ", multi);
        multi = multi * x;
    }
    printf("\n");
    return total;
}
  
// Driver Code
int main()
{
    int x = 2;
    int n = 5;
    printf("%.2f", sum(x, n));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find
// the sum of series
// 1 + x^2 + x^3 + ....+ x^n
  
class GFG {
  
    // Java code to print the sum
    // of the given series
    static double sum(int x, int n)
    {
        double i, total = 1.0, multi = x;
  
        // First Term
        System.out.print("1 ");
  
        // Loop to print the N terms
        // of the series and compute
        // their sum
        for (i = 1; i < n; i++) {
            total = total + multi;
            System.out.print(multi);
            System.out.print(" ");
            multi = multi * x;
        }
  
        System.out.println();
        return total;
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        int x = 2;
        int n = 5;
        System.out.printf(
            "%.2f", sum(x, n));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find sum of 
# series of 1 + x^2 + x^3 + ....+ x^n 
  
# Function to find the sum of 
# the series and print N terms 
# of the given series 
def sum(x, n): 
      
    total = 1.0
    multi =
  
    # First Term 
    print(1, end = " "
  
    # Loop to print the N terms 
    # of the series and find their sum 
    for i in range(1, n): 
          
        total = total + multi 
        print('%.1f' % multi, end = " "
        multi = multi *
          
    print('\n')
    return total; 
  
# Driver code 
x = 2
n = 5
print('%.2f' % sum(x, n))
  
# This code is contributed by Pratik Basu 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find
// the sum of series
// 1 + x^2 + x^3 + ....+ x^n
using System;
class GFG{
  
// C# code to print the sum
// of the given series
static double sum(int x, int n)
{
    double i, total = 1.0, multi = x;
  
    // First Term
    Console.Write("1 ");
  
    // Loop to print the N terms
    // of the series and compute
    // their sum
    for (i = 1; i < n; i++)
    {
        total = total + multi;
        Console.Write(multi);
        Console.Write(" ");
        multi = multi * x;
    }
    Console.WriteLine();
    return total;
}
  
// Driver Code
public static void Main(String[] args)
{
    int x = 2;
    int n = 5;
    Console.Write("{0:F2}", sum(x, n));
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output:

1 2.0 4.0 8.0 16.0 
31.00

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : PratikBasu, Rajput-Ji