# Program to find the Nth Prime Number

• Difficulty Level : Hard
• Last Updated : 26 Apr, 2021

Given an integer N. The task is to find the Nth prime number.

Examples:

Hey! Looking for some great resources suitable for young ones? You've come to the right place. Check out our self-paced courses designed for students of grades I-XII

Start with topics like Python, HTML, ML, and learn to make some games and apps all with the help of our expertly designed content! So students worry no more, because GeeksforGeeks School is now here!

Input :
Output : 11

Input : 16
Output : 53

Input : 1049
Output : 8377

Approach:

• Find the prime numbers up to MAX_SIZE using Sieve of Eratosthenes.
• Store all primes in a vector.
• For a given number N, return the element at (N-1)th index in a vector.

Below is the implementation of the above approach:

## C++

 `// C++ program to the nth prime number` `#include ``using` `namespace` `std;` `// initializing the max value``#define MAX_SIZE 1000005` `// Function to generate N prime numbers using``// Sieve of Eratosthenes``void` `SieveOfEratosthenes(vector<``int``>& primes)``{``    ``// Create a boolean array "IsPrime[0..MAX_SIZE]" and``    ``// initialize all entries it as true. A value in``    ``// IsPrime[i] will finally be false if i is``    ``// Not a IsPrime, else true.``    ``bool` `IsPrime[MAX_SIZE];``    ``memset``(IsPrime, ``true``, ``sizeof``(IsPrime));` `    ``for` `(``int` `p = 2; p * p < MAX_SIZE; p++) {``        ``// If IsPrime[p] is not changed, then it is a prime``        ``if` `(IsPrime[p] == ``true``) {``            ``// Update all multiples of p greater than or``            ``// equal to the square of it``            ``// numbers which are multiple of p and are``            ``// less than p^2 are already been marked.``            ``for` `(``int` `i = p * p; i < MAX_SIZE; i += p)``                ``IsPrime[i] = ``false``;``        ``}``    ``}` `    ``// Store all prime numbers``    ``for` `(``int` `p = 2; p < MAX_SIZE; p++)``        ``if` `(IsPrime[p])``            ``primes.push_back(p);``}` `// Driver Code``int` `main()``{``    ``// To store all prime numbers``    ``vector<``int``> primes;` `    ``// Function call``    ``SieveOfEratosthenes(primes);` `    ``cout << ``"5th prime number is "` `<< primes << endl;``    ``cout << ``"16th prime number is "` `<< primes << endl;``    ``cout << ``"1049th prime number is "` `<< primes;` `    ``return` `0;``}`

## Java

 `// Java program to the nth prime number ``import` `java.util.ArrayList;``class` `GFG``{``    ` `    ``// initializing the max value``    ``static` `int` `MAX_SIZE = ``1000005``;``    ` `    ``// To store all prime numbers``    ``static` `ArrayList primes =``       ``new` `ArrayList();``    ` `    ``// Function to generate N prime numbers``    ``// using Sieve of Eratosthenes``    ``static` `void` `SieveOfEratosthenes()``    ``{``        ``// Create a boolean array "IsPrime[0..MAX_SIZE]"``        ``// and initialize all entries it as true.``        ``// A value in IsPrime[i] will finally be false``        ``// if i is Not a IsPrime, else true.``        ``boolean` `[] IsPrime = ``new` `boolean``[MAX_SIZE];``        ` `        ``for``(``int` `i = ``0``; i < MAX_SIZE; i++)``            ``IsPrime[i] = ``true``;``        ` `        ``for` `(``int` `p = ``2``; p * p < MAX_SIZE; p++)``        ``{``            ``// If IsPrime[p] is not changed,``            ``// then it is a prime``            ``if` `(IsPrime[p] == ``true``)``            ``{``                ``// Update all multiples of p greater than or``                ``// equal to the square of it``                ``// numbers which are multiple of p and are``                ``// less than p^2 are already been marked.``                ``for` `(``int` `i = p * p; i < MAX_SIZE; i += p)``                    ``IsPrime[i] = ``false``;``            ``}``        ``}``    ` `        ``// Store all prime numbers``        ``for` `(``int` `p = ``2``; p < MAX_SIZE; p++)``        ``if` `(IsPrime[p] == ``true``)``                ``primes.add(p);``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `main (String[] args)``    ``{``        ` `        ``// Function call``        ``SieveOfEratosthenes();``    ` `        ``System.out.println(``"5th prime number is "` `+``                                    ``primes.get(``4``));``        ``System.out.println(``"16th prime number is "` `+``                                    ``primes.get(``15``));``        ``System.out.println(``"1049th prime number is "` `+``                                    ``primes.get(``1048``));``    ``}``}` `// This code is contributed by ihritik`

## Python3

 `# Python3 program to the nth prime number ``primes ``=` `[]` `# Function to generate N prime numbers using ``# Sieve of Eratosthenes``def` `SieveOfEratosthenes():``    ` `    ``n ``=` `1000005``    ` `    ``# Create a boolean array "prime[0..n]" and``    ``# initialize all entries it as true. A value``    ``# in prime[i] will finally be false if i is``    ``# Not a prime, else true.``    ``prime ``=` `[``True` `for` `i ``in` `range``(n ``+` `1``)]``    ` `    ``p ``=` `2``    ``while` `(p ``*` `p <``=` `n):``          ` `        ``# If prime[p] is not changed,``        ``# then it is a prime``        ``if` `(prime[p] ``=``=` `True``):``              ` `            ``# Update all multiples of p``            ``for` `i ``in` `range``(p ``*` `p, n ``+` `1``, p):``                ``prime[i] ``=` `False``                ` `        ``p ``+``=` `1``      ` `    ``# Print all prime numbers``    ``for` `p ``in` `range``(``2``, n ``+` `1``):``        ``if` `prime[p]:``            ``primes.append(p)``  ` `# Driver code``if` `__name__``=``=``'__main__'``:``    ` `    ``# Function call``    ``SieveOfEratosthenes()``    ` `    ``print``(``"5th prime number is"``, primes[``4``]);``    ``print``(``"16th prime number is"``, primes[``15``]);``    ``print``(``"1049th prime number is"``, primes[``1048``]);``    ` `# This code is contributed by grand_master`

## C#

 `// C# program to the nth prime number``using` `System;``using` `System.Collections;` `class` `GFG``{``    ` `// initializing the max value``static` `int` `MAX_SIZE = 1000005;` `// To store all prime numbers``static` `ArrayList primes = ``new` `ArrayList();` `// Function to generate N prime numbers using``// Sieve of Eratosthenes``static` `void` `SieveOfEratosthenes()``{``    ``// Create a boolean array "IsPrime[0..MAX_SIZE]"``    ``// and initialize all entries it as true.``    ``// A value in IsPrime[i] will finally be false``    ``// if i is Not a IsPrime, else true.``    ``bool` `[] IsPrime = ``new` `bool``[MAX_SIZE];``    ` `    ``for``(``int` `i = 0; i < MAX_SIZE; i++)``        ``IsPrime[i] = ``true``;``    ` `    ``for` `(``int` `p = 2; p * p < MAX_SIZE; p++)``    ``{``        ``// If IsPrime[p] is not changed,``        ``// then it is a prime``        ``if` `(IsPrime[p] == ``true``)``        ``{``            ``// Update all multiples of p greater than or``            ``// equal to the square of it``            ``// numbers which are multiple of p and are``            ``// less than p^2 are already been marked.``            ``for` `(``int` `i = p * p; i < MAX_SIZE; i += p)``                ``IsPrime[i] = ``false``;``        ``}``    ``}` `    ``// Store all prime numbers``    ``for` `(``int` `p = 2; p < MAX_SIZE; p++)``    ``if` `(IsPrime[p] == ``true``)``            ``primes.Add(p);``}` `// Driver Code``public` `static` `void` `Main ()``{``    ` `    ``// Function call``    ``SieveOfEratosthenes();` `    ``Console.WriteLine(``"5th prime number is "` `+``                                   ``primes);``    ``Console.WriteLine(``"16th prime number is "` `+``                                   ``primes);``    ``Console.WriteLine(``"1049th prime number is "` `+``                                   ``primes);``}``}` `// This code is contributed by ihritik`

## Javascript

 ``
Output:
```5th prime number is 11
16th prime number is 53
1049th prime number is 8377```

My Personal Notes arrow_drop_up