Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Program to Find the Incenter of a Triangle

  • Last Updated : 03 May, 2021

Given the vertices of a triangle and length of its sides. A circle is inscribed in a triangle. The task is to find the incenter of a triangle.
Examples: 
 

Input: A(2, 2), B(1, 1), C(3, 1) 
        and AB = 2, BC = 1, AC = 1
Output: (2, 1.5)

Input: A(3, 3), B(1, 2), C(2, 2) 
        and AB = 3, BC = 2, AC = 2
Output: (2.5, 2.83)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Approach: 
 

  • The centre of the circle that touches the sides of a triangle is called its incenter.
  • Suppose the vertices of the triangle are A(x1, y1), B(x2, y2) and C(x3, y3).
  • Let the side AB = a, BC = b, AC = c then the coordinates of the in-center is given by the formula:
     

  •  

  •  

Below is the implementation of the above approach: 
 

C++




// C++ program to find the
// incenter of a triangle
#include <bits/stdc++.h>
using namespace std;
 
// Driver code
int main()
{
    // coordinate of the vertices
    float x1 = 2, x2 = 1, x3 = 3;
    float y1 = 2, y2 = 1, y3 = 1;
    float a = 2, b = 1, c = 1;
 
    // Formula to calculate in-center
    float x = (a * x1 + b *
                   x2 + c * x3) / (a + b + c);
    float y = (a * y1 + b *
                   y2 + c * y3) / (a + b + c);
 
    // System.out.print(setprecision(3));
    cout << "Incenter = "
         << "(" << x << ", " << y << ")";
    return 0;
}
 
// This code is contributed by 29AjayKumar

Java




// Java program to find the
// incenter of a triangle
 
import java.util.*;
import java.lang.*;
 
class GFG {
 
    // Driver code
    public static void main(String args[])
    {
        // coordinate of the vertices
        float x1 = 2, x2 = 1, x3 = 3;
        float y1 = 2, y2 = 1, y3 = 1;
        float a = 2, b = 1, c = 1;
 
        // Formula to calculate in-center
        float x
            = (a * x1 + b * x2 + c * x3) / (a + b + c);
        float y
            = (a * y1 + b * y2 + c * y3) / (a + b + c);
 
        // System.out.print(setprecision(3));
        System.out.println("Incenter= "
                           + "(" + x + ", " + y + ")");
    }
}

Python3




# Python3 program to find the
# incenter of a triangle
 
# Driver code
 
# coordinate of the vertices
x1 = 2; x2 = 1; x3 = 3;
y1 = 2; y2 = 1; y3 = 1;
a = 2; b = 1; c = 1;
 
# Formula to calculate in-center
x = (a * x1 + b * x2 + c * x3) / (a + b + c);
y = (a * y1 + b * y2 + c * y3) / (a + b + c);
 
# System.out.print(setprecision(3));
print("Incenter = (", x, ",", y, ")");
 
# This code is contributed
# by Akanksha Rai

C#




// C# program to find the
// incenter of a triangle
 
using System;
 
class GFG
{
 
    // Driver code
    public static void Main()
    {
        // coordinate of the vertices
        float x1 = 2, x2 = 1, x3 = 3;
        float y1 = 2, y2 = 1, y3 = 1;
        float a = 2, b = 1, c = 1;
 
        // Formula to calculate in-center
        float x
            = (a * x1 + b * x2 + c * x3) / (a + b + c);
        float y
            = (a * y1 + b * y2 + c * y3) / (a + b + c);
 
        // System.out.print(setprecision(3));
        Console.WriteLine("Incenter= "
                        + "(" + x + ", " + y + ")");
    }
}
 
// This code is contributed by vt_m.

Javascript




<script>
      // JavaScript program to find the
      // incenter of a triangle
      // Driver code
      // coordinate of the vertices
      var x1 = 2,
        x2 = 1,
        x3 = 3;
      var y1 = 2,
        y2 = 1,
        y3 = 1;
      var a = 2,
        b = 1,
        c = 1;
 
      // Formula to calculate in-center
      var x = (a * x1 + b * x2 + c * x3) / (a + b + c);
      var y = (a * y1 + b * y2 + c * y3) / (a + b + c);
 
      document.write(
        "Incenter = " + "(" + x.toFixed(1) + ", " + y.toFixed(1) + ")"
      );
    </script>
Output: 
Incenter= (2.0, 1.5)

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :