Open In App
Related Articles

Program to find the Area and Volume of Icosahedron

Improve Article
Improve
Save Article
Save
Like Article
Like

Given the side of an Icosahedron. The task is to find the area and volume of the given Icosahedron.
Examples
 

Input : a = 5
Output : Area: 216.506
         Volume: 272.712

Input : a = 10
Output : Area: 866.0254
         Volume: 2181.695

 

In geometry, an Icosahedron is a regular polyhedron which contains 20 identical equilateral triangular faces, 30 sides, and 12 vertices. 
 

Area of Icosahedron

Formula to find Area and Volume of Icosahedron: Let a be the side of Icosahedron, then 
 

Surface area of Icosahedron 5\sqrt{3} a^{2}
and, Volume of Icosahedron \frac{5}{12}\left ( 3 + \sqrt{5} \right )a^{3}
 

 

C++




// C++ program to find the Area and
// volume of Icosahedron
#include <bits/stdc++.h>
using namespace std;
 
// Function to find area of Icosahedron
float findArea(float a)
{
    float area;
 
    // Formula to calculating area
    area = 5 * sqrt(3) * a * a;
     
    return area;
}
 
// Function to find volume of Icosahedron
float findVolume(float a)
{
    float volume;
 
    // Formula to calculating volume
    volume = ((float)5 / 12) * (3 + sqrt(5)) * a * a * a;
     
    return volume;
}
 
// Driver Code
int main()
{
    float a = 5;
 
    // Function call to find area of Icosahedron.
    cout << "Area: " << findArea(a) << endl;
     
    // Function call to find volume of Icosahedron.
    cout << "Volume: " << findVolume(a);
 
    return 0;
}


Java




// Java program to find the Area and
// volume of Icosahedron
import java.io.*;
 
class GFG {
     
    // Function to find area of Icosahedron
    static float findArea(float a)
    {
        float area;
     
        // Formula to calculating area
        area = (float)(5 * Math.sqrt(3) * a * a);
         
        return area;
    }
     
    // Function to find volume of Icosahedron
    static float findVolume(float a)
    {
        float volume;
     
        // Formula to calculating volume
        volume = (float)(((float)5 / 12) * (3 + Math.sqrt(5)) * a * a * a);
         
        return volume;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        float a = 5;
 
        // Function call to find area of Icosahedron.
        System.out.println("Area: " + findArea(a));
         
        // Function call to find volume of Icosahedron.
        System.out.println("Volume: " + findVolume(a));
    }
}


Python3




# Python3 program to
# find the Area and
# volume of Icosahedron
 
# import math module
# to use sqrt function
from math import sqrt
 
# Function to find
# area of Icosahedron
def findArea(a):
 
    # Formula to calculate area
    area = 5 * sqrt(3) * a * a
    return area
 
# Function to find
# volume of Icosahedron
def findVolume(a):
     
    # Formula to calculate volume
    volume = ((5 / 12) *
              (3 + sqrt(5)) *
               a * a * a)
    return volume
 
# Driver Code
a = 5
 
# Function call to
# find area of Icosahedron.
print("Area: " , findArea(a))
     
# Function call to find
# volume of Icosahedron.
print("Volume: " , findVolume(a))
 
# This code is contributed
# by ihritik


C#




// C# program to find the Area and
// volume of Icosahedron
using System;
 
public class GFG {
     
    // Function to find area of Icosahedron
    static float findArea(float a)
    {
        float area;
     
        // Formula to calculating area
        area = (float)(5 * Math.Sqrt(3) * a * a);
         
        return area;
    }
     
    // Function to find volume of Icosahedron
    static float findVolume(float a)
    {
        float volume;
     
        // Formula to calculating volume
        volume = (float)(((float)5 / 12) * (3 + Math.Sqrt(5)) * a * a * a);
         
        return volume;
    }
     
    // Driver code
    static public void Main ()
    {
        float a = 5;
 
        // Function call to find area of Icosahedron.
        Console.WriteLine("Area: " + findArea(a));
         
        // Function call to find volume of Icosahedron.
        Console.WriteLine("Volume: " + findVolume(a));
        //Code
    }
}


PHP




<?php
// PHP program to find
// the Area and volume
// of Icosahedron
 
// Function to find area
// of Icosahedron
function findArea($a)
{
    $area;
 
    // Formula to
    // calculating area
    $area = 5 * sqrt(3) *
                $a * $a;
     
    return $area;
}
 
// Function to find
// volume of Icosahedron
function findVolume($a)
{
    $volume;
 
    // Formula to
    // calculating volume
    $volume = ((float)5 / 12) *
                (3 + sqrt(5)) *
                  $a * $a * $a;
     
    return $volume;
}
 
// Driver Code
$a = 5;
 
// Function call to find
// area of Icosahedron.
echo "Area: " , findArea($a), "\n";
 
// Function call to find
// volume of Icosahedron.
echo "Volume: " , findVolume($a);
 
// This code is contributed
// by jit_t
?>


Javascript




<script>
// javascript program to find the Area and
// volume of Icosahedron
 
// Function to find area of Icosahedron
function findArea( a)
{
    let area;
 
    // Formula to calculating area
    area = 5 * Math.sqrt(3) * a * a;
     
    return area;
}
 
// Function to find volume of Icosahedron
function findVolume( a)
{
    let volume;
 
    // Formula to calculating volume
    volume = (5 / 12) * (3 + Math.sqrt(5)) * a * a * a;
     
    return volume;
}
 
// Driver Code
    let a = 5;
 
    // Function call to find area of Icosahedron.
    document.write( "Area: " + findArea(a).toFixed(3) +"<br/>");
     
    // Function call to find volume of Icosahedron.
    document.write("Volume: " + findVolume(a).toFixed(3));
     
// This code is contributed by todaysgaurav
 
</script>


Output: 

Area: 216.506
Volume: 272.712

 

Time Complexity: O(1)
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 09 Jun, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials