Program to find sum of harmonic series

Harmonic series is inverse of a arithmetic progression. In general, the terms in a harmonic progression can be denoted as 1/a, 1/(a + d), 1/(a + 2d), 1/(a + 3d) …. 1/(a + nd).
As Nth term of AP is given as ( a + (n – 1)d). Hence, Nth term of harmonic progression is reciprocal of Nth term of AP, which is 1/(a + (n – 1)d), where “a” is the 1st term of AP and “d” is a common difference.

Method #1: Simple approach

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find sum of harmonic series 
#include<bits/stdc++.h> 
using namespace std;
   
// Function to return sum of harmonic series
double sum(int n)
{
  double i, s = 0.0;
  for(i = 1; i <= n; i++)
      s = s + 1 / i;
        
  return s;
}
  
// Driver code
int main()
{
    int n = 5;
      
    cout << "Sum is " << sum(n);
    return 0;
}
  
// This code is contributed by SHUBHAMSINGH10
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to find sum of harmonic series
#include <stdio.h>
  
// Function to return sum of harmonic series
double sum(int n)
{
  double i, s = 0.0;
  for (i = 1; i <= n; i++)
      s = s + 1/i;
  return s;
}
  
int main()
{
    int n = 5;
    printf("Sum is %f", sum(n));
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find sum of harmonic series
import java.io.*;
  
class GFG {
      
    // Function to return sum of
    // harmonic series
    static double sum(int n)
    {
      double i, s = 0.0;
      for (i = 1; i <= n; i++)
          s = s + 1/i;
      return s;
    }
   
     
    // Driven Program
    public static void main(String args[])
    {
        int n = 5;
        System.out.printf("Sum is %f", sum(n));        
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find the sum of harmonic series
  
def sum(n):
    i = 1
    s = 0.0
    for i in range(1, n+1):
        s = s + 1/i;
    return s;
  
# Driver Code 
n = 5
print("Sum is", round(sum(n), 6))
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find sum of harmonic series
using System;
  
class GFG {
      
    // Function to return sum of
    // harmonic series
    static float sum(int n)
    {
        double i, s = 0.0;
          
        for (i = 1; i <= n; i++)
            s = s + 1/i;
              
        return (float)s;
    }
  
      
    // Driven Program
    public static void Main()
    {
        int n = 5;        
        Console.WriteLine("Sum is "
                           + sum(n));        
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum of harmonic series
  
// Function to return sum of
// harmonic series
function sum( $n)
{
    $i;
    $s = 0.0;
    for ($i = 1; $i <= $n; $i++)
        $s = $s + 1 / $i;
    return $s;
}
  
    // Driver Code
    $n = 5;
    echo("Sum is ");
    echo(sum($n));
      
?>
chevron_right

Output:
Sum is 2.283333

Method #2: Using recursion

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find sum of 
// harmonic series using recursion 
#include<bits/stdc++.h>
using namespace std;
  
float sum(float n) 
    // Base condition 
    if (n < 2) 
        return 1; 
  
    else
        return 1 / n + (sum(n - 1)); 
  
// Driven Code 
int main() 
{
    cout << (sum(8)) << endl; 
    cout << (sum(10)) << endl; 
    return 0;
  
// This code is contributed by
// Shashank_Sharma
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of 
// harmonic series using recursion 
import java.io.*; 
  
class GFG 
  
float sum(float n) 
    // Base condition 
    if (n < 2
        return 1
  
    else
        return 1 / n + (sum(n - 1)); 
  
// Driven Code 
public static void main(String args[]) 
  GFG g = new GFG(); 
  System.out.println(g.sum(8)); 
  System.out.print(g.sum(10)); 
  
// This code is contributed by Shivi_Aggarwal 
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find sum of
# harmonic series using recursion
  
def sum(n):
  
    # Base condition
    if n < 2:
        return 1
  
    else:
        return 1 / n + (sum(n - 1))
          
print(sum(8))
print(sum(10))
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

//C# program to find sum of 
// harmonic series using recursion 
using System;
  
class GFG 
  
static float sum(float n) 
    // Base condition 
    if (n < 2) 
        return 1; 
  
    else
        return 1 / n + (sum(n - 1)); 
  
// Driven Code 
public static void Main() 
    Console.WriteLine(sum(8)); 
    Console.WriteLine(sum(10)); 
  
// This code is contributed by shs..
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum of 
// harmonic series using recursion 
  
function sum($n)
{
  
    // Base condition 
    if ($n < 2)
        return 1;
  
    else
        return 1 / $n + (sum($n - 1)); 
  
// Driver Code
echo sum(8) . "\n";
echo sum(10);
  
// This code is contributed by Ryuga
?>
chevron_right

Output:
2.7178571428571425
2.9289682539682538

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :