# Program to find Star number

A number is termed as star number, if it is a centered figurate number that represents a centered hexagram (six-pointed star) similar to chinese checker game. The few star numbers are 1, 13, 37, 73, 121, 181, 253, 337, 433, ….

Examples:

```Input : n = 2
Output : 13

Input : n = 4
Output : 73

Input : n = 6
Output : 181
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

If we take few examples, we can notice that the n-th star number is given by the formula:

`n-th star number = 6n(n - 1) + 1 `

Below is the implementation of above formula.

## C++

 `// C++ program to find star number ` `#include ` `using` `namespace` `std; ` ` `  `// Returns n-th star number ` `int` `findStarNum(``int` `n) ` `{ ` `    ``return` `(6 * n * (n - 1) + 1); ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 3; ` `    ``cout << findStarNum(n); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find star number ` `import` `java.io.*; ` ` `  `class` `GFG { ` `    ``// Returns n-th star number ` `    ``static` `int` `findStarNum(``int` `n) ` `    ``{ ` `        ``return` `(``6` `* n * (n - ``1``) + ``1``); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``int` `n = ``3``; ` `        ``System.out.println(findStarNum(n)); ` `    ``} ` `} ` ` `  `// This code is contributed ` `// by Nikita Tiwari. `

## Python3

 `# Python3 program to ` `# find star number ` ` `  `# Returns n-th  ` `# star number ` `def` `findStarNum(n): ` ` `  `    ``return` `(``6` `*` `n ``*` `(n ``-` `1``) ``+` `1``) ` ` `  `# Driver code ` `n ``=` `3` `print``(findStarNum(n)) ` ` `  `# This code is contributed by Smitha Dinesh Semwal `

## C#

 `// C# program to find star number ` `using` `System; ` ` `  `class` `GFG { ` `    ``// Returns n-th star number ` `    ``static` `int` `findStarNum(``int` `n) ` `    ``{ ` `        ``return` `(6 * n * (n - 1) + 1); ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 3; ` `        ``Console.Write(findStarNum(n)); ` `    ``} ` `} ` ` `  `// This code is contributed ` `// by vt_m. `

## PHP

 ` `

Output :

```37
```

Interesting Properties of Start Numbers:

1. The digital root of a star number is always 1 or 4, and progresses in the sequence 1, 4, 1.
2. The last two digits of a star number in base 10 are always 01, 13, 21, 33, 37, 41, 53, 61, 73, 81, or 93.
3. The generating function for the star numbers is
`x*(x^2 + 10*x + 1) / (1-x)^3 = x + 13*x^2 + 37*x^3 +73*x^4 .......`
4. The star numbers satisfy the linear recurrence equation
`S(n) = S(n-1) + 12(n-1)`

This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : jit_t

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.