# Program to find root of an equations using secant method

The secant method is used to find the root of an equation f(x) = 0. It is started from two distinct estimates x1 and x2 for the root. It is an iterative procedure involving linear interpolation to a root. The iteration stops if the difference between two intermediate values is less than convergence factor.

Examples :

```Input : equation = x3 + x - 1
x1 = 0, x2 = 1, E = 0.0001
Output : Root of the given equation = 0.682326
No. of iteration=5
```

Algorithm

```Initialize: x1, x2, E, n         // E = convergence indicator
calculate f(x1),f(x2)

if(f(x1) * f(x2) = E); //repeat the loop until the convergence
print 'x0' //value of the root
print 'n' //number of iteration
}
else
```

## C++

 `// C++ Program to find root of an  ` `// equations using secant method ` `#include ` `using` `namespace` `std; ` `// function takes value of x and returns f(x) ` `float` `f(``float` `x) ` `{ ` `    ``// we are taking equation as x^3+x-1 ` `    ``float` `f = ``pow``(x, 3) + x - 1; ` `    ``return` `f; ` `} ` ` `  `void` `secant(``float` `x1, ``float` `x2, ``float` `E) ` `{ ` `    ``float` `n = 0, xm, x0, c; ` `    ``if` `(f(x1) * f(x2) < 0) { ` `        ``do` `{ ` `            ``// calculate the intermediate value ` `            ``x0 = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); ` ` `  `            ``// check if x0 is root of equation or not ` `            ``c = f(x1) * f(x0); ` ` `  `            ``// update the value of interval ` `            ``x1 = x2; ` `            ``x2 = x0; ` ` `  `            ``// update number of iteration ` `            ``n++; ` ` `  `            ``// if x0 is the root of equation then break the loop ` `            ``if` `(c == 0) ` `                ``break``; ` `            ``xm = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); ` `        ``} ``while` `(``fabs``(xm - x0) >= E); ``// repeat the loop ` `                                ``// until the convergence ` ` `  `        ``cout << ``"Root of the given equation="` `<< x0 << endl; ` `        ``cout << ``"No. of iterations = "` `<< n << endl; ` `    ``} ``else` `        ``cout << ``"Can not find a root in the given inteval"``; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``// initializing the values ` `    ``float` `x1 = 0, x2 = 1, E = 0.0001; ` `    ``secant(x1, x2, E); ` `    ``return` `0; ` `} `

## Java

 `// Java Program to find root of an  ` `// equations using secant method ` `class` `GFG { ` `     `  `    ``// function takes value of x and  ` `    ``// returns f(x) ` `    ``static` `float` `f(``float` `x) { ` `         `  `        ``// we are taking equation  ` `        ``// as x^3+x-1 ` `        ``float` `f = (``float``)Math.pow(x, ``3``)  ` `                               ``+ x - ``1``; ` `                                `  `        ``return` `f; ` `    ``} ` `     `  `    ``static` `void` `secant(``float` `x1, ``float` `x2, ` `                                ``float` `E) { ` `         `  `        ``float` `n = ``0``, xm, x0, c; ` `        ``if` `(f(x1) * f(x2) < ``0``)  ` `        ``{ ` `            ``do` `{ ` `                 `  `                ``// calculate the intermediate ` `                ``// value ` `                ``x0 = (x1 * f(x2) - x2 * f(x1)) ` `                            ``/ (f(x2) - f(x1)); ` `         `  `                ``// check if x0 is root of ` `                ``// equation or not ` `                ``c = f(x1) * f(x0); ` `         `  `                ``// update the value of interval ` `                ``x1 = x2; ` `                ``x2 = x0; ` `         `  `                ``// update number of iteration ` `                ``n++; ` `         `  `                ``// if x0 is the root of equation  ` `                ``// then break the loop ` `                ``if` `(c == ``0``) ` `                    ``break``; ` `                ``xm = (x1 * f(x2) - x2 * f(x1))  ` `                            ``/ (f(x2) - f(x1)); ` `                             `  `                ``// repeat the loop until the  ` `                ``// convergence  ` `            ``} ``while` `(Math.abs(xm - x0) >= E);  ` `                                                 `  `            ``System.out.println(``"Root of the"` `+ ` `                    ``" given equation="` `+ x0); ` `                     `  `            ``System.out.println(``"No. of "` `                      ``+ ``"iterations = "` `+ n); ` `        ``}  ` `         `  `        ``else` `            ``System.out.print(``"Can not find a"` `              ``+ ``" root in the given inteval"``); ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) { ` `         `  `        ``// initializing the values ` `        ``float` `x1 = ``0``, x2 = ``1``, E = ``0``.0001f; ` `        ``secant(x1, x2, E); ` `    ``} ` `} ` ` `  `// This code is contributed by Anant Agarwal. `

## Python3

 `# Python3 Program to find root of an  ` `# equations using secant method  ` ` `  `# function takes value of x  ` `# and returns f(x)  ` `def` `f(x): ` `     `  `    ``# we are taking equation  ` `    ``# as x^3+x-1  ` `    ``f ``=` `pow``(x, ``3``) ``+` `x ``-` `1``;  ` `    ``return` `f;  ` ` `  `def` `secant(x1, x2, E): ` `    ``n ``=` `0``; xm ``=` `0``; x0 ``=` `0``; c ``=` `0``;  ` `    ``if` `(f(x1) ``*` `f(x2) < ``0``): ` `        ``while` `True``:  ` `             `  `            ``# calculate the intermediate value  ` `            ``x0 ``=` `((x1 ``*` `f(x2) ``-` `x2 ``*` `f(x1)) ``/`  `                            ``(f(x2) ``-` `f(x1)));  ` ` `  `            ``# check if x0 is root of  ` `            ``# equation or not  ` `            ``c ``=` `f(x1) ``*` `f(x0);  ` ` `  `            ``# update the value of interval  ` `            ``x1 ``=` `x2;  ` `            ``x2 ``=` `x0;  ` ` `  `            ``# update number of iteration  ` `            ``n ``+``=` `1``;  ` ` `  `            ``# if x0 is the root of equation  ` `            ``# then break the loop  ` `            ``if` `(c ``=``=` `0``):  ` `                ``break``;  ` `            ``xm ``=` `((x1 ``*` `f(x2) ``-` `x2 ``*` `f(x1)) ``/`  `                            ``(f(x2) ``-` `f(x1))); ` `             `  `            ``if``(``abs``(xm ``-` `x0) < E): ` `                ``break``; ` `         `  `        ``print``(``"Root of the given equation ="``,  ` `                               ``round``(x0, ``6``));  ` `        ``print``(``"No. of iterations = "``, n);  ` `         `  `    ``else``: ` `        ``print``(``"Can not find a root in "``, ` `                   ``"the given inteval"``);  ` ` `  `# Driver code  ` ` `  `# initializing the values  ` `x1 ``=` `0``;  ` `x2 ``=` `1``;  ` `E ``=` `0.0001``;  ` `secant(x1, x2, E);  ` ` `  `# This code is contributed by mits `

## C#

 `// C# Program to find root of an  ` `// equations using secant method ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``// function takes value of  ` `    ``// x and returns f(x) ` `    ``static` `float` `f(``float` `x)  ` `    ``{ ` `         `  `        ``// we are taking equation  ` `        ``// as x^3+x-1 ` `        ``float` `f = (``float``)Math.Pow(x, 3)  ` `                                ``+ x - 1; ` `        ``return` `f; ` `    ``} ` `     `  `    ``static` `void` `secant(``float` `x1, ``float` `x2, ` `                    ``float` `E)                  ` `                     `  `    ``{ ` `         `  `        ``float` `n = 0, xm, x0, c; ` `        ``if` `(f(x1) * f(x2) < 0)  ` `        ``{ ` `            ``do` `{ ` `                 `  `                ``// calculate the intermediate ` `                ``// value ` `                ``x0 = (x1 * f(x2) - x2 * f(x1)) ` `                    ``/ (f(x2) - f(x1)); ` `         `  `                ``// check if x0 is root of ` `                ``// equation or not ` `                ``c = f(x1) * f(x0); ` `         `  `                ``// update the value of interval ` `                ``x1 = x2; ` `                ``x2 = x0; ` `         `  `                ``// update number of iteration ` `                ``n++; ` `         `  `                ``// if x0 is the root of equation  ` `                ``// then break the loop ` `                ``if` `(c == 0) ` `                    ``break``; ` `                ``xm = (x1 * f(x2) - x2 * f(x1))  ` `                    ``/ (f(x2) - f(x1)); ` `                             `  `                ``// repeat the loop until  ` `                ``// the convergence  ` `            ``} ``while` `(Math.Abs(xm - x0) >= E);  ` `                                                 `  `            ``Console.WriteLine(``"Root of the"` `+ ` `                    ``" given equation="` `+ x0); ` `                     `  `            ``Console.WriteLine(``"No. of "` `+  ` `                              ``"iterations = "` `+ n); ` `        ``}  ` `         `  `        ``else` `            ``Console.WriteLine(``"Can not find a"` `+  ` `                              ``" root in the given inteval"``); ` `    ``} ` `     `  `    ``// Driver code ` `    ``public` `static` `void` `Main(String []args)  ` `    ``{ ` `         `  `        ``// initializing the values ` `        ``float` `x1 = 0, x2 = 1, E = 0.0001f; ` `        ``secant(x1, x2, E); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 `= ``\$E``);  ` `         `  `        ``echo` `"Root of the given equation="``. ``\$x0``.``"\n"` `; ` `        ``echo` `"No. of iterations = "``. ``\$n` `; ` `         `  `    ``} ``else` `        ``echo` `"Can not find a root in the given inteval"``; ` `} ` ` `  `// Driver code ` `{ ` `     `  `    ``// initializing the values ` `    ``\$x1` `= 0; ``\$x2` `= 1;  ` `    ``\$E` `= 0.0001; ` `    ``secant(``\$x1``, ``\$x2``, ``\$E``); ` `    ``return` `0; ` `} ` ` `  `// This code is contributed by nitin mittal. ` `?> `

Output :

```Root of the given equation = 0.682326
No. of iterations = 5
```

Time Complexity = O(1)

This article is contributed by Niteesh Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.