Program to find root of an equations using secant method
The secant method is used to find the root of an equation f(x) = 0. It is started from two distinct estimates x1 and x2 for the root. It is an iterative procedure involving linear interpolation to a root. The iteration stops if the difference between two intermediate values is less than the convergence factor.
Examples :
Input : equation = x3 + x – 1
x1 = 0, x2 = 1, E = 0.0001
Output : Root of the given equation = 0.682326
No. of iteration=5
Algorithm
Initialize: x1, x2, E, n // E = convergence indicator calculate f(x1),f(x2) if(f(x1) * f(x2) = E); //repeat the loop until the convergence print 'x0' //value of the root print 'n' //number of iteration } else print "can not found a root in the given interval"
C++
// C++ Program to find root of an // equations using secant method #include <bits/stdc++.h> using namespace std; // function takes value of x and returns f(x) float f( float x) { // we are taking equation as x^3+x-1 float f = pow (x, 3) + x - 1; return f; } void secant( float x1, float x2, float E) { float n = 0, xm, x0, c; if (f(x1) * f(x2) < 0) { do { // calculate the intermediate value x0 = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); // check if x0 is root of equation or not c = f(x1) * f(x0); // update the value of interval x1 = x2; x2 = x0; // update number of iteration n++; // if x0 is the root of equation then break the loop if (c == 0) break ; xm = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); } while ( fabs (xm - x0) >= E); // repeat the loop // until the convergence cout << "Root of the given equation=" << x0 << endl; cout << "No. of iterations = " << n << endl; } else cout << "Can not find a root in the given interval" ; } // Driver code int main() { // initializing the values float x1 = 0, x2 = 1, E = 0.0001; secant(x1, x2, E); return 0; } |
Java
// Java Program to find root of an // equations using secant method class GFG { // function takes value of x and // returns f(x) static float f( float x) { // we are taking equation // as x^3+x-1 float f = ( float )Math.pow(x, 3 ) + x - 1 ; return f; } static void secant( float x1, float x2, float E) { float n = 0 , xm, x0, c; if (f(x1) * f(x2) < 0 ) { do { // calculate the intermediate // value x0 = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); // check if x0 is root of // equation or not c = f(x1) * f(x0); // update the value of interval x1 = x2; x2 = x0; // update number of iteration n++; // if x0 is the root of equation // then break the loop if (c == 0 ) break ; xm = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); // repeat the loop until the // convergence } while (Math.abs(xm - x0) >= E); System.out.println( "Root of the" + " given equation=" + x0); System.out.println( "No. of " + "iterations = " + n); } else System.out.print( "Can not find a" + " root in the given interval" ); } // Driver code public static void main(String[] args) { // initializing the values float x1 = 0 , x2 = 1 , E = 0 .0001f; secant(x1, x2, E); } } // This code is contributed by Anant Agarwal. |
Python3
# Python3 Program to find root of an # equations using secant method # function takes value of x # and returns f(x) def f(x): # we are taking equation # as x^3+x-1 f = pow (x, 3 ) + x - 1 ; return f; def secant(x1, x2, E): n = 0 ; xm = 0 ; x0 = 0 ; c = 0 ; if (f(x1) * f(x2) < 0 ): while True : # calculate the intermediate value x0 = ((x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1))); # check if x0 is root of # equation or not c = f(x1) * f(x0); # update the value of interval x1 = x2; x2 = x0; # update number of iteration n + = 1 ; # if x0 is the root of equation # then break the loop if (c = = 0 ): break ; xm = ((x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1))); if ( abs (xm - x0) < E): break ; print ( "Root of the given equation =" , round (x0, 6 )); print ( "No. of iterations = " , n); else : print ( "Can not find a root in " , "the given interval" ); # Driver code # initializing the values x1 = 0 ; x2 = 1 ; E = 0.0001 ; secant(x1, x2, E); # This code is contributed by mits |
C#
// C# Program to find root of an // equations using secant method using System; class GFG { // function takes value of // x and returns f(x) static float f( float x) { // we are taking equation // as x^3+x-1 float f = ( float )Math.Pow(x, 3) + x - 1; return f; } static void secant( float x1, float x2, float E) { float n = 0, xm, x0, c; if (f(x1) * f(x2) < 0) { do { // calculate the intermediate // value x0 = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); // check if x0 is root of // equation or not c = f(x1) * f(x0); // update the value of interval x1 = x2; x2 = x0; // update number of iteration n++; // if x0 is the root of equation // then break the loop if (c == 0) break ; xm = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); // repeat the loop until // the convergence } while (Math.Abs(xm - x0) >= E); Console.WriteLine( "Root of the" + " given equation=" + x0); Console.WriteLine( "No. of " + "iterations = " + n); } else Console.WriteLine( "Can not find a" + " root in the given interval" ); } // Driver code public static void Main(String []args) { // initializing the values float x1 = 0, x2 = 1, E = 0.0001f; secant(x1, x2, E); } } // This code is contributed by vt_m. |
PHP
<?php // PHP Program to find root of an // equations using secant method // function takes value of x // and returns f(x) function f( $x ) { // we are taking equation // as x^3+x-1 $f = pow( $x , 3) + $x - 1; return $f ; } function secant( $x1 , $x2 , $E ) { $n = 0; $xm ; $x0 ; $c ; if (f( $x1 ) * f( $x2 ) < 0) { do { // calculate the intermediate value $x0 = ( $x1 * f( $x2 ) - $x2 * f( $x1 )) / (f( $x2 ) - f( $x1 )); // check if x0 is root // of equation or not $c = f( $x1 ) * f( $x0 ); // update the value of interval $x1 = $x2 ; $x2 = $x0 ; // update number of iteration $n ++; // if x0 is the root of equation // then break the loop if ( $c == 0) break ; $xm = ( $x1 * f( $x2 ) - $x2 * f( $x1 )) / (f( $x2 ) - f( $x1 )); // repeat the loop // until the convergence } while ( abs ( $xm - $x0 ) >= $E ); echo "Root of the given equation=" . $x0 . "\n" ; echo "No. of iterations = " . $n ; } else echo "Can not find a root in the given interval" ; } // Driver code { // initializing the values $x1 = 0; $x2 = 1; $E = 0.0001; secant( $x1 , $x2 , $E ); return 0; } // This code is contributed by nitin mittal. ?> |
Javascript
<script> // JavaScript Program to find root of an // equations using secant method // function takes value of x and returns f(x) function f(x) { // we are taking equation as x^3+x-1 let f = Math.pow(x, 3) + x - 1; return f; } function secant(x1, x2, E) { let n = 0, xm, x0, c; if (f(x1) * f(x2) < 0) { do { // calculate the intermediate value x0 = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); // check if x0 is root of equation or not c = f(x1) * f(x0); // update the value of interval x1 = x2; x2 = x0; // update number of iteration n++; // if x0 is the root of equation then break the loop if (c == 0) break ; xm = (x1 * f(x2) - x2 * f(x1)) / (f(x2) - f(x1)); } while (Math.abs(xm - x0) >= E); // repeat the loop // until the convergence document.write( "Root of the given equation=" + x0.toFixed(6) + "<br>" ); document.write( "No. of iterations = " + n + "<br>" ); } else document.write( "Can not find a root in the given interval" ); } // Driver code // initializing the values let x1 = 0, x2 = 1, E = 0.0001; secant(x1, x2, E); // This code is contributed by Surbhi Tyagi. </script> |
Time Complexity: O(1)
Auxiliary Space: O(1)
Reference
https://en.wikipedia.org/wiki/Secant_method
This article is contributed by Niteesh Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...