Given a number N, the task is to find the remainder when N is divided by R (a two-digit Number). The input of the Number may be very large.
Examples:
Input: N = 13589234356546756, R = 13
Output: 11
Input: N = 3435346456547566345436457867978, R = 17
Output: 13
- Get the digit of N one by one from left to right.
- For each digit, combine with next digit if its less than R.
- If the combination at any point reaches above R, take and store the Remainder.
- Repeat the above steps for all digits from left to right.
Below is the program that implements the above approach:
C
#include <stdio.h>
#include <string.h>
int Remainder( char str[], int R)
{
int len = strlen (str);
int Num, Rem = 0;
for ( int i = 0; i < len; i++) {
Num = Rem * 10 + (str[i] - '0' );
Rem = Num % R;
}
return Rem;
}
int main()
{
char str[] = "13589234356546756" ;
int R = 13;
printf ( "%d" ,Remainder(str, R));
return 0;
}
|
C++
#include <bits/stdc++.h>
using namespace std;
int Remainder(string str, int R)
{
int len = str.length();
int Num, Rem = 0;
for ( int i = 0; i < len; i++) {
Num = Rem * 10 + (str[i] - '0' );
Rem = Num % R;
}
return Rem;
}
int main()
{
string str = "13589234356546756" ;
int R = 13;
cout << Remainder(str, R);
return 0;
}
|
Java
class GFG
{
static int Remainder(String str, int R)
{
int len = str.length();
int Num, Rem = 0 ;
for ( int i = 0 ; i < len; i++) {
Num = Rem * 10 + (str.charAt(i) - '0' );
Rem = Num % R;
}
return Rem;
}
public static void main( String [] args)
{
String str = "13589234356546756" ;
int R = 13 ;
System.out.println(Remainder(str, R));
}
}
|
Python 3
def Remainder( str , R):
l = len ( str )
Rem = 0
for i in range (l):
Num = Rem * 10 + ( ord ( str [i]) -
ord ( '0' ))
Rem = Num % R
return Rem
if __name__ = = "__main__" :
str = "13589234356546756"
R = 13
print (Remainder( str , R))
|
Javascript
<script>
function Remainder(str, R)
{
var len = str.length;
var Num, Rem = 0;
for ( var i = 0; i < len; i++) {
Num = Rem * 10 + (str[i] - '0' );
Rem = Num % R;
}
return Rem;
}
var str = "13589234356546756" ;
var R = 13;
document.write(Remainder(str, R));
</script>
|
C#
using System;
class GFG
{
static int Remainder(String str,
int R)
{
int len = str.Length;
int Num, Rem = 0;
for ( int i = 0; i < len; i++)
{
Num = Rem * 10 + (str[i] - '0' );
Rem = Num % R;
}
return Rem;
}
public static void Main()
{
String str = "13589234356546756" ;
int R = 13;
Console.WriteLine(Remainder(str, R));
}
}
|
PHP
<?php
function Remainder( $str , $R )
{
$len = strlen ( $str );
$Num = 0; $Rem = 0;
for ( $i = 0; $i < $len ; $i ++)
{
$Num = $Rem * 10 + ( $str [ $i ] - '0' );
$Rem = $Num % $R ;
}
return $Rem ;
}
$str = "13589234356546756" ;
$R = 13;
echo Remainder( $str , $R );
|
Complexity Analysis:
- Time Complexity: O(L) where L is the length of the string
- Auxiliary Space: O(1), since no extra space has been taken.
Another approach:
Approach
1. Define the large number as a string.
2. Define the value of r.
3. Initialize the remainder to 0.
4. Iterate over each digit of the number using a loop.
5. Convert the current digit from a character to an integer.
6. Update the remainder by applying the modulo operator to the digit and the current remainder.
7. Print the final remainder.
C++
#include <iostream>
int main()
{
std::string number
= "123456789123456789123456789123456789123456789" ;
int r = 7;
int remainder = 0;
for ( int i = 0; i < number.length(); i++) {
int digit = number[i] - '0' ;
remainder = (remainder * 10 + digit) % r;
}
std::cout << "The remainder when " << number
<< " is divided by " << r << " is "
<< remainder << "." << std::endl;
return 0;
}
|
C
#include <stdio.h>
int main() {
char number[] = "123456789123456789123456789123456789123456789" ;
int r = 7;
int remainder = 0;
for ( int i = 0; number[i] != '\0' ; i++) {
int digit = number[i] - '0' ;
remainder = (remainder * 10 + digit) % r;
}
printf ( "The remainder when %s is divided by %d is %d.\n" , number, r, remainder);
return 0;
}
|
Python3
number = "123456789123456789123456789123456789123456789"
r = 7
remainder = 0
for i in range ( len (number)):
digit = int (number[i])
remainder = (remainder * 10 + digit) % r
print (f "The remainder when {number} is divided by {r} is {remainder}." )
|
Javascript
let number = "123456789123456789123456789123456789123456789" ;
let r = 7;
let remainder = 0;
for (let i = 0; i < number.length; i++) {
let digit = parseInt(number.charAt(i));
remainder = (remainder * 10 + digit) % r;
}
console.log(`The remainder when ${number} is divided by ${r} is ${remainder}.`);
|
Java
import java.math.BigInteger;
public class Main {
public static void main(String[] args)
{
String number
= "123456789123456789123456789123456789123456789" ;
int r = 7 ;
BigInteger bigNumber = new BigInteger(number);
BigInteger remainder
= bigNumber.remainder(BigInteger.valueOf(r));
System.out.println( "The remainder when " + number
+ " is divided by " + r + " is "
+ remainder + "." );
}
}
|
C#
using System;
class Program
{
static void Main()
{
string number = "123456789123456789123456789123456789123456789" ;
int r = 7;
int remainder = 0;
for ( int i = 0; i < number.Length; i++)
{
int digit = number[i] - '0' ;
remainder = (remainder * 10 + digit) % r;
}
Console.WriteLine( "The remainder when {0} is divided by {1} is {2}." , number, r, remainder);
}
}
|
Output
The remainder when 123456789123456789123456789123456789123456789 is divided by 7 is 1.
Time complexity: O(n), where n is the number of digits in the large number.
Auxiliary Space: O(1), as we are only storing a few integers and a string of digits.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
06 Apr, 2023
Like Article
Save Article