Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Program to find Nth term in the series 0, 2, 1, 3, 1, 5, 2, 7, 3,…

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a number N. The task is to write a program to find the N-th term in the below series: 
 

0, 2, 1, 3, 1, 5, 2, 7, 3, … 
 

Examples: 
 

Input: N = 5
Output: 1

Input: N = 10
Output: 11

 

When we look carefully at the series, we find that the series is a mixture of 2 series: 
 

  1. Terms at odd positions in the given series forms fibonacci series.
  2. Terms at even positions in the given series forms a series of prime numbers.
     

Now, To solve the above-given problem, first check whether the input number N is even or odd. 
 

Below is the implementation of above approach: 
 

C++




// CPP program to find N-th term
// in the series
#include<bits/stdc++.h>
#define MAX 1000
using namespace std;
 
// Function to find Nth Prime Number
int NthPrime(int n)
{
    int count = 0;
    for (int i = 2; i <= MAX; i++) {
        int check = 0;
        for (int j = 2; j <= sqrt(i); j++) {
            if (i % j == 0) {
                check = 1;
                break;
            }
        }
        if (check == 0)
            count++;
 
        if (count == n) {
            return i;
            break;
        }
    }
}
 
// Function to find Nth Fibonacci Number
int NthFib(int n)
{
    // Declare an array to store
    // Fibonacci numbers.
    int f[n + 2];
    int i;
 
    // 0th and 1st number of the
    // series are 0 and 1
    f[0] = 0;
    f[1] = 1;
 
    for (i = 2; i <= n; i++) {
        f[i] = f[i - 1] + f[i - 2];
    }
 
    return f[n];
}
 
// Function to find N-th term
// in the series
void findNthTerm(int n)
{
    // If n is even
    if (n % 2 == 0) {
        n = n / 2;
        n = NthPrime(n);
        cout << n << endl;
    }
 
    // If n is odd
    else {
        n = (n / 2) + 1;
        n = NthFib(n - 1);
        cout << n << endl;
    }
}
 
// Driver code
int main()
{
    int X = 5;
    findNthTerm(X);
 
    X = 10;
    findNthTerm(X);
 
    return 0;
}

Java




// Java program to find N-th
// term in the series
class GFG
{
 
static int MAX = 1000;
 
// Function to find Nth Prime Number
static int NthPrime(int n)
{
int count = 0;
int i;
for (i = 2; i <= MAX; i++)
{
    int check = 0;
    for (int j = 2; j <= Math.sqrt(i); j++)
    {
        if (i % j == 0)
        {
            check = 1;
            break;
        }
    }
    if (check == 0)
        count++;
 
    if (count == n)
    {
        return i;
         
    }
}
    return 0;
}
 
// Function to find Nth Fibonacci Number
static int NthFib(int n)
{
// Declare an array to store
// Fibonacci numbers.
int []f = new int[n + 2];
int i;
 
// 0th and 1st number of the
// series are 0 and 1
f[0] = 0;
f[1] = 1;
 
for (i = 2; i <= n; i++)
{
    f[i] = f[i - 1] + f[i - 2];
}
 
return f[n];
}
 
// Function to find N-th term
// in the series
static void findNthTerm(int n)
{
// If n is even
if (n % 2 == 0)
{
    n = n / 2;
    n = NthPrime(n);
    System.out.println(n);
}
 
// If n is odd
else
{
    n = (n / 2) + 1;
    n = NthFib(n - 1);
    System.out.println(n);
}
}
 
// Driver code
public static void main(String[] args)
{
    int X = 5;
    findNthTerm(X);
 
    X = 10;
    findNthTerm(X);
}
}
 
// This code is contributed
// by ChitraNayal

Python 3




# Python 3 program to find N-th
# term in the series
 
# import sqrt method from math module
from math import sqrt
 
# Globally declare constant value
MAX = 1000
 
# Function to find Nth Prime Number
def NthPrime(n) :
     
    count = 0
    for i in range(2, MAX + 1) :
         
        check = 0
        for j in range(2, int(sqrt(i)) + 1) :
             
            if i % j == 0 :
                check = 1
                break
 
        if check == 0 :
            count += 1
 
        if count == n :
            return i
            break
 
# Function to find Nth Fibonacci Number
def NthFib(n) :
 
    # Create a list of size n+2
    # to store Fibonacci numbers.
    f = [0] * (n + 2)
 
    # 0th and 1st number of the
    # series are 0 and 1
    f[0], f[1] = 0, 1
 
    for i in range(2, n + 1) :
 
        f[i] = f[i - 1] + f[i - 2]
 
    return f[n]
 
# Function to find N-th
# term in the series
def findNthTerm(n) :
 
    # If n is even
    if n % 2 == 0 :
        n //= 2
        n = NthPrime(n)
        print(n)
 
    # If n is odd
    else :
        n = (n // 2) + 1
        n = NthFib(n - 1)
        print(n)
 
# Driver code
if __name__ == "__main__" :
 
    X = 5
 
    # function calling
    findNthTerm(X)
 
    X = 10
    findNthTerm(X)
     
# This code is contributed by ANKITRAI1

C#




// C# program to find N-th term
// in the series
using System;
 
class GFG
{
static int MAX = 1000;
 
// Function to find Nth Prime Number
static int NthPrime(int n)
{
int count = 0;
int i;
for ( i = 2; i <= MAX; i++)
{
    int check = 0;
    for (int j = 2; j <= Math.Sqrt(i); j++)
    {
        if (i % j == 0)
        {
            check = 1;
            break;
        }
    }
    if (check == 0)
        count++;
 
    if (count == n)
    {
        return i;
    }
}
    return 0;
}
 
// Function to find Nth Fibonacci Number
static int NthFib(int n)
{
     
// Declare an array to store
// Fibonacci numbers.
int []f = new int[n + 2];
int i;
 
// 0th and 1st number of the
// series are 0 and 1
f[0] = 0;
f[1] = 1;
 
for (i = 2; i <= n; i++)
{
    f[i] = f[i - 1] + f[i - 2];
}
 
return f[n];
}
 
// Function to find N-th term
// in the series
static void findNthTerm(int n)
{
// If n is even
if (n % 2 == 0)
{
    n = n / 2;
    n = NthPrime(n);
    Console.WriteLine(n);
}
 
// If n is odd
else
{
    n = (n / 2) + 1;
    n = NthFib(n - 1);
    Console.WriteLine(n);
}
}
 
// Driver code
public static void Main()
{
    int X = 5;
    findNthTerm(X);
 
    X = 10;
    findNthTerm(X);
}
}
 
// This code is contributed
// by ChitraNayal

PHP




<?php
// PHP program to find
// N-th term in the series
$MAX = 1000;
 
// Function to find
// Nth Prime Number
function NthPrime($n)
{
    global $MAX;
    $count = 0;
    for ($i = 2; $i <= $MAX; $i++)
    {
        $check = 0;
        for ($j = 2;
             $j <= sqrt($i); $j++)
        {
            if ($i % $j == 0)
            {
                $check = 1;
                break;
            }
        }
        if ($check == 0)
            $count++;
 
        if ($count == $n)
        {
            return $i;
            break;
        }
    }
}
 
// Function to find
// Nth Fibonacci Number
function NthFib($n)
{
    // Declare an array to store
    // Fibonacci numbers.
    $f = array($n + 2);
 
    // 0th and 1st number of
    // the series are 0 and 1
    $f[0] = 0;
    $f[1] = 1;
 
    for ($i = 2; $i <= $n; $i++)
    {
        $f[$i] = $f[$i - 1] +
                 $f[$i - 2];
    }
 
    return $f[$n];
}
 
// Function to find N-th
// term in the series
function findNthTerm($n)
{
    // If n is even
    if ($n % 2 == 0)
    {
        $n = $n / 2;
        $n = NthPrime($n);
        echo $n . "\n";
    }
 
    // If n is odd
    else
    {
        $n = ($n / 2) + 1;
        $n = NthFib($n - 1);
        echo $n . "\n";
    }
}
 
// Driver code
$X = 5;
findNthTerm($X);
 
$X = 10;
findNthTerm($X);
 
// This Code is contributed
// by mits
?>

Javascript




<script>
 
// JavaScript program to find N-th term
// in the series
 
let  MAX =1000;
// Function to find Nth Prime Number
function NthPrime( n)
{
    let count = 0;
    for (let i = 2; i <= MAX; i++) {
        let check = 0;
        for (let j = 2; j <= Math.sqrt(i); j++) {
            if (i % j == 0) {
                check = 1;
                break;
            }
        }
        if (check == 0)
            count++;
 
        if (count == n) {
            return i;
            break;
        }
    }
}
 
// Function to find Nth Fibonacci Number
function NthFib( n)
{
    // Declare an array to store
    // Fibonacci numbers.
    var f=new Int16Array(n+2).fill(0);
     
    let i;
 
    // 0th and 1st number of the
    // series are 0 and 1
    f[0] = 0;
    f[1] = 1;
 
    for (i = 2; i <= n; i++) {
        f[i] = f[i - 1] + f[i - 2];
    }
  
    return f[n];
}
 
// Function to find N-th term
// in the series
function findNthTerm( n)
{
    // If n is even
    if (n % 2 == 0) {
        n = n / 2;
        n = NthPrime(n);
        document.write(n +"<br/>");
    }
 
    // If n is odd
    else {
        n = parseInt(n / 2) + 1;
        n = NthFib(n - 1);
        document.write(n +"<br/>");
    }
}
 
// Driver code
 
    let X = 5;
    findNthTerm(X);
 
    X = 10;
    findNthTerm(X);
 
// This code contributed by aashish1995
 
</script>

Output: 

1
11

 

Time Complexity: O(MAX*sqrt(MAX)), where MAX represents a defined constant.
Auxiliary Space: O(X), where X represents the given integer.


My Personal Notes arrow_drop_up
Last Updated : 28 May, 2022
Like Article
Save Article
Similar Reads
Related Tutorials