Program to find N-th term of the series a, b, b, c, c, c,…….
Given a number N. The task is to write a program to find the N-th term in the below series:
a, b, b, c, c, c, d, d, d, d, .....
Examples:
Input : 12 Output : e Input : 288 Output : x
The idea is to use AP sum formula to find the solution to this problem. Clearly the series is depicted as 1a, 2b’s, 3c’s, 4d’s, 5e’s and so on. Thus making it an AP. Now we can use the AP sum formula:
sum = (n/2)*(a + (n-1)*d)
Which in this case becomes sum = (n(n+1))/2( since a = 1 and d = 1 ) where ‘sum’ here is the Nth term given.
Below is the implementation of the above approach:
C++
// CPP program to find nth term of the // given series #include <bits/stdc++.h> using namespace std; // Function to find nth term of the // given series void findNthTerm( int n) { // Let us find roots of equation x * (x + 1)/2 = n n = n * 2; int a = 1, b = 1, c = -1 * n; int d = b * b - 4 * a * c; double sqrt_val = sqrt ( abs (d)); int x1 = ( double )(-b + sqrt_val) / (2 * a); int x2 = ( double )(-b - sqrt_val) / (2 * a); if (x1 >= 1) cout << ( char )( 'a' + x1) << endl; else if (x2 >= 1) cout << ( char )( 'a' + x2) << endl; } // Driver program int main() { int n = 12; findNthTerm(n); n = 288; findNthTerm(n); return 0; } |
Java
// Java program to find nth // term of the given series import java.io.*; class GFG { // Function to find nth term // of the given series static void findNthTerm( int n) { // Let us find roots of // equation x * (x + 1)/2 = n n = n * 2 ; int a = 1 , b = 1 , c = - 1 * n; int d = b * b - 4 * a * c; double sqrt_val = Math.sqrt(Math.abs(d)); int x1 = ( int )((-b + sqrt_val) / ( 2 * a)); int x2 = ( int )((-b - sqrt_val) / ( 2 * a)); if (x1 >= 1 ) System.out.println(( char )( 'a' + x1)); else if (x2 >= 1 ) System.out.println(( char )( 'a' + x2)); } // Driver Code public static void main(String[] args) { int n = 12 ; findNthTerm(n); n = 288 ; findNthTerm(n); } } // This code has been contributed // by anuj_67. |
Python 3
# Python 3 program to find nth # term of the given series import math # Function to find nth term # of the given series def findNthTerm(n): # Let us find roots of # equation x * (x + 1)/2 = n n = n * 2 a = 1 b = 1 c = - 1 * n d = b * b - 4 * a * c sqrt_val = math.sqrt( abs (d)) x1 = ( - b + sqrt_val) / / ( 2 * a) x2 = ( - b - sqrt_val) / / ( 2 * a) x1 = int (x1) x2 = int (x2) # ASCII of 'a' is 97 if (x1 > = 1 ): print ( chr ( 97 + x1)) elif (x2 > = 1 ): print ( chr ( 97 + x2)) # Driver Code if __name__ = = "__main__" : n = 12 findNthTerm(n) n = 288 findNthTerm(n) # This code is contributed # by ChitraNayal |
Javascript
<script> // Javascript program to find nth // term of the given series const str = "abcdefghijklmnopqrstuvwxyz" ; // Function to find nth term // of the given series function findNthTerm( n) { // Let us find roots of // equation x * (x + 1)/2 = n n = n * 2; let a = 1, b = 1, c = -1 * n; let d = b * b - 4 * a * c; let sqrt_val = Math.sqrt(Math.abs(d)); let x1 = parseInt( ((-b + sqrt_val) / (2 * a))); let x2 = parseInt( ((-b - sqrt_val) / (2 * a))); if (x1 >= 1) document.write(str[x1]+ "<br/>" ); else if (x2 >= 1) document.write(str[x2]+ "<br/>" ); } // Driver Code let n = 12; findNthTerm(n); n = 288; findNthTerm(n); // This code is contributed by shikhasingrajput </script> |
C#
// C# program to find nth // term of the given series using System; public class GFG { // Function to find nth term // of the given series static void findNthTerm( int n) { // Let us find roots of // equation x * (x + 1)/2 = n n = n * 2; int a = 1, b = 1, c = -1 * n; int d = b * b - 4 * a * c; double sqrt_val = Math.Sqrt(Math.Abs(d)); int x1 = ( int )((-b + sqrt_val) / (2 * a)); int x2 = ( int )((-b - sqrt_val) / (2 * a)); if (x1 >= 1) Console.WriteLine(( char )( 'a' + x1)); else if (x2 >= 1) Console.WriteLine(( char )( 'a' + x2)); } // Driver Code static public void Main(String[] args) { int n = 12; findNthTerm(n); n = 288; findNthTerm(n); } } // contributed by Arnab Kundu |
PHP
<?php // PHP program to find nth // term of the given series // Function to find nth term // of the given series function findNthTerm( $n ) { // Let us find roots of // equation x * (x + 1)/2 = n $n = $n * 2; $a = 1; $b = 1; $c = -1 * $n ; $d = $b * $b - 4 * $a * $c ; $sqrt_val = sqrt( abs ( $d )); $x1 = (- $b + $sqrt_val ) / (2 * $a ); $x2 = (- $b - $sqrt_val ) / (2 * $a ); // Ascii of 'a' is 97 if ((int) $x1 >= 1) echo chr (97+ $x1 ) . "\n" ; else if ((int) $x2 >= 1) echo chr (97+ $x2 ), "\n" ; } // Driver Code $n = 12; findNthTerm( $n ); $n = 288; findNthTerm( $n ); // This Code is contributed by mits ?> |
e x
Time complexity: O(n) // Because using inbuilt function sqrt
Auxiliary Space: O(1)
Approach 2:
One approach to simplify this code and avoid solving a quadratic equation to find the nth term of the given series is to use the formula for the nth term of the series:
nth term = ceil((-1 + sqrt(1 + 8*n)) / 2)
here is the step by step procedure:
- If we substitute the values for a and l in this formula, we get: n = (-1 + sqrt(1 + 8*S)) / 2,where S is the sum of the first n terms.
- The above formula gives us the value of n for a given sum S. Since we want to find the nth term of the series, we can use this formula to calculate the value of n for a given input value, and then find the nth term using the formula: nth term = ‘a’ + (n – 1), where ‘a’ is the first term of the series.
- In the given program, the function findNthTerm takes an integer argument n, which represents the position of the term to be found in the series. The function calculates the value of n using the above formula and then finds the nth term of the series using the formula given above. The program calls this function for two different input values (12 and 288) to demonstrate how it works. The output of the program is the nth term of the series for each input value, which is printed to the console.
here is the given code:
C++
#include <iostream> #include <cmath> using namespace std; void findNthTerm( int n) { int x1 = ceil ((-1 + sqrt (1 + 8*n)) / 2); if (x1 >= 1) cout << ( char )( 'a' + x1 - 1) << endl; } int main() { int n = 12; findNthTerm(n); n = 288; findNthTerm(n); return 0; } |
Java
import java.lang.Math; public class Main { public static void findNthTerm( int n) { int x1 = ( int ) Math.ceil((- 1 + Math.sqrt( 1 + 8 * n)) / 2 ); if (x1 >= 1 ) System.out.println(( char ) ( 'a' + x1 - 1 )); } public static void main(String[] args) { int n = 12 ; findNthTerm(n); n = 288 ; findNthTerm(n); } } |
Python3
import math def findNthTerm(n): x1 = math.ceil(( - 1 + math.sqrt( 1 + 8 * n)) / 2 ) if x1 > = 1 : print ( chr ( ord ( 'a' ) + x1 - 1 )) n = 12 findNthTerm(n) n = 288 findNthTerm(n) |
C#
using System; class Program { static void findNthTerm( int n) { int x1 = ( int )Math.Ceiling((-1 + Math.Sqrt(1 + 8 * n)) / 2); if (x1 >= 1) Console.WriteLine(( char )( 'a' + x1 - 1)); } static void Main( string [] args) { int n = 12; findNthTerm(n); n = 288; findNthTerm(n); Console.ReadLine(); } } |
Javascript
function findNthTerm(n) { let x1 = Math.ceil((-1 + Math.sqrt(1 + 8 * n)) / 2); if (x1 >= 1) { console.log(String.fromCharCode( 'a' .charCodeAt(0) + x1 - 1)); } } let n = 12; findNthTerm(n); n = 288; findNthTerm(n); |
e x
Time complexity: O(1) Constant time to produce output
Auxiliary Space: O(1)
Please Login to comment...