Program to find last two digits of 2^n

Given a number n, we need to find the last two digits of 2n.

Examples:

Input : n = 7
Output : 28

Input : n = 72
Output : 96
2^72 = 4722366482869645213696

A Naive Approach is to find the value of 2^n iteratively or using pow function. Once the value of 2^n is calculated, find the last two digits and print it.

Note: This approach will only work for 2n within certain range, as overflow occurs.

Below is the implementation of the above approach.

C++



filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ code to find last 2 digits of 2^n
#include <bits/stdc++.h>
using namespace std;
  
// Find the first digit
int LastTwoDigit(long long int num)
{
    // Get the last digit from the number
    int one = num % 10;
  
    // Remove last digit from number
    num /= 10;
  
    // Get the last digit from
    // the number(last second of num)
    int tens = num % 10;
  
    // Take last digit to ten's position
    // i.e. last second digit
    tens *= 10;
  
    // Add the value of ones and tens to
    // make it complete 2 digit number
    num = tens + one;
  
    // return the first digit
    return num;
}
  
// Driver program
int main()
{
    int n = 10;
    long long int num = 1;
  
    // pow function used
    num = pow(2, n);
  
    cout << "Last " << 2;
  
    cout << " digits of " << 2;
  
    cout << "^" << n << " = ";
  
    cout << LastTwoDigit(num) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to find last 2 digits of 2^n
  
class Geeks {
      
// Find the first digit
static long LastTwoDigit(long num)
{
      
    // Get the last digit from the number
    long one = num % 10;
  
    // Remove last digit from number
    num /= 10;
  
    // Get the last digit from
    // the number(last second of num)
    long tens = num % 10;
  
    // Take last digit to ten's position
    // i.e. last second digit
    tens *= 10;
  
    // Add the value of ones and tens to
    // make it complete 2 digit number
    num = tens + one;
  
    // return the first digit
    return num;
}
  
    // Driver code
    public static void main(String args[])
    {
        int n = 10;
        long num = 1;
      
        // pow function used
        num = (long)Math.pow(2, n);
      
        System.out.println("Last 2 digits of 2^10 = "
                                 +LastTwoDigit(num));
      
    }
}
  
// This code is contributed by ankita_saini

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 code to find
# last 2 digits of 2^n
  
# Find the first digit
def LastTwoDigit(num):
      
    # Get the last digit from the number
    one = num % 10
  
    # Remove last digit from number
    num //= 10
  
    # Get the last digit from
    # the number(last second of num)
    tens = num % 10
  
    # Take last digit to ten's position
    # i.e. last second digit
    tens *= 10
  
    # Add the value of ones and tens to
    # make it complete 2 digit number
    num = tens + one
  
    # return the first digit
    return num
  
# Driver Code
if __name__ == "__main__":
    n = 10
    num = 1
  
    # pow function used
    num = pow(2, n);
  
    print("Last " + str(2) + " digits of " + 
                    str(2) + "^" + str(n) + 
                           " = ", end = "")
  
    print(LastTwoDigit(num))
  
# This code is contributed
# by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to find last
// 2 digits of 2^n
using System;
  
class GFG
{
      
// Find the first digit
static long LastTwoDigit(long num)
{
      
    // Get the last digit
    // from the number
    long one = num % 10;
  
    // Remove last digit
    // from number
    num /= 10;
  
    // Get the last digit 
    // from the number(last
    // second of num)
    long tens = num % 10;
  
    // Take last digit to 
    // ten's position i.e. 
    // last second digit
    tens *= 10;
  
    // Add the value of ones 
    // and tens to make it 
    // complete 2 digit number
    num = tens + one;
  
    // return the first digit
    return num;
}
  
    // Driver code
    public static void Main(String []args)
    {
        int n = 10;
        long num = 1;
      
        // pow function used
        num = (long)Math.Pow(2, n);
      
        Console.WriteLine("Last 2 digits of 2^10 = "
                                   LastTwoDigit(num));
    }
}
  
// This code is contributed
// by Ankita_Saini

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to find last
// 2 digits of 2^n
  
// Find the first digit
function LastTwoDigit($num)
{
    // Get the last digit
    // from the number
    $one = $num % 10;
  
    // Remove last digit
    // from number
    $num /= 10;
  
    // Get the last digit 
    // from the number(last
    // second of num)
    $tens = $num % 10;
  
    // Take last digit to
    // ten's position i.e. 
    // last second digit
    $tens *= 10;
  
    // Add the value of ones 
    // and tens to make it 
    // complete 2 digit number
    $num = $tens + $one;
  
    // return the first digit
    return $num;
}
  
// Driver Code
$n = 10;
$num = 1;
  
// pow function used
$num = pow(2, $n);
  
echo ("Last " . 2);
  
echo (" digits of " . 2);
  
echo("^" . $n . " = ");
  
echo( LastTwoDigit($num)) ;
  
// This code is contributed
// by Shivi_Aggarwal 
?>

chevron_right


Output:

Last 2 digits of 2^10 = 24

Efficient approach: The efficient way is to keep only 2 digits after every multiplication. This idea is very simiar to the one discussed in Modular exponentiation where a general way is discussed to find (a^b)%c, here in this case c is 10^2 as the last two digits are only needed.

Below is the implementation of the above approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ code to find last 2 digits of 2^n
#include <iostream>
using namespace std;
  
/* Iterative Function to calculate (x^y)%p in O(log y) */
int power(long long int x, long long int y, long long int p)
{
    long long int res = 1; // Initialize result
  
    x = x % p; // Update x if it is more than or
    // equal to p
  
    while (y > 0) {
  
        // If y is odd, multiply x with result
        if (y & 1)
            res = (res * x) % p;
  
        // y must be even now
        y = y >> 1; // y = y/2
        x = (x * x) % p;
    }
    return res;
}
  
// C++ function to calculate
// number of digits in x
int numberOfDigits(int x)
{
    int i = 0;
    while (x) {
        x /= 10;
        i++;
    }
    return i;
}
  
// C++ function to print last 2 digits of 2^n
void LastTwoDigit(int n)
{
    cout << "Last " << 2;
    cout << " digits of " << 2;
    cout << "^" << n << " = ";
  
    // Generating 10^2
    int temp = 1;
    for (int i = 1; i <= 2; i++)
        temp *= 10;
  
    // Calling modular exponentiation
    temp = power(2, n, temp);
  
    // Printing leftmost zeros. Since (2^n)%2
    // can have digits less then 2. In that
    // case we need to print zeros
    for (int i = 0; i < 2 - numberOfDigits(temp); i++)
        cout << 0;
  
    // If temp is not zero then print temp
    // If temp is zero then already printed
    if (temp)
        cout << temp;
}
  
// Driver program to test above functions
int main()
{
    int n = 72;
    LastTwoDigit(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to find last 
// 2 digits of 2^n
class GFG 
{
  
/* Iterative Function to 
calculate (x^y)%p in O(log y) */
static int power(long x, long y, 
                         long p)
{
int res = 1; // Initialize result
  
x = x % p; // Update x if it is more 
           // than or equal to p
  
while (y > 0
{
  
    // If y is odd, multiply
    // x with result
    long r = y & 1;
  
    if (r == 1)
        res = (res * (int)x) % (int)p;
  
    // y must be even now
    y = y >> 1; // y = y/2
    x = (x * x) % p;
}
return res;
}
  
// Java function to calculate
// number of digits in x
static int numberOfDigits(int x)
{
int i = 0;
while (x != 0
{
    x /= 10;
    i++;
}
return i;
}
  
// Java function to print 
// last 2 digits of 2^n
static void LastTwoDigit(int n)
{
System.out.print("Last " + 2 +
                 " digits of " + 2 + "^");
System.out.print(n +" = ");
  
// Generating 10^2
int temp = 1;
for (int i = 1; i <= 2; i++)
    temp *= 10;
  
// Calling modular exponentiation
temp = power(2, n, temp);
  
// Printing leftmost zeros. 
// Since (2^n)%2 can have digits
// less then 2. In that case
// we need to print zeros
for (int i = 0
         i < ( 2 - numberOfDigits(temp)); i++)
    System.out.print(0 + " ");
  
// If temp is not zero then 
// print temp. If temp is zero
// then already printed
if (temp != 0)
    System.out.println(temp);
}
  
// Driver Code
public static void main(String[] args) 
{
    int n = 72;
    LastTwoDigit(n);
}
}
  
// This code is contributed
// by ChitraNayal

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 code to find
# last 2 digits of 2^n
  
# Iterative Function to 
# calculate (x^y)%p in O(log y) 
def power(x, y, p):
  
    res = 1 # Initialize result
  
    x = x % p # Update x if it is more 
              # than or equal to p
  
    while (y > 0):
  
        # If y is odd, multiply
        # x with result
        if (y & 1):
            res = (res * x) % p
  
        # y must be even now
        y = y >> 1 # y = y/2
        x = (x * x) % p
          
    return res
  
# function to calculate
# number of digits in x
def numberOfDigits(x):
  
    i = 0
    while (x):
        x //= 10
        i += 1
      
    return i
  
# function to print 
# last 2 digits of 2^n
def LastTwoDigit(n):
  
    print("Last " + str(2) + 
          " digits of " + str(2), end = "")
    print("^" + str(n) + " = ", end = "")
  
    # Generating 10^2
    temp = 1
    for i in range(1, 3):
        temp *= 10
  
    # Calling modular exponentiation
    temp = power(2, n, temp)
  
    # Printing leftmost zeros. 
    # Since (2^n)%2 can have digits 
    # less then 2. In that case we 
    # need to print zeros
    for i in range(2 - numberOfDigits(temp)):
        print(0, end = "")
  
    # If temp is not zero then print temp
    # If temp is zero then already printed
    if temp:
        print(temp)
  
# Driver Code
if __name__ == "__main__":
    n = 72
    LastTwoDigit(n)
  
# This code is contributed
# by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to find last 
// 2 digits of 2^n
using System;
  
class GFG 
{
  
/* Iterative Function to calculate
   (x^y)%p in O(log y) */
static int power(long x, long y, 
                         long p)
{
int res = 1; // Initialize result
  
x = x % p; // Update x if it is more 
           // than or equal to p
  
while (y > 0) 
{
  
    // If y is odd, multiply
    // x with result
    long r = y & 1;
  
    if (r == 1)
        res = (res * (int)x) % (int)p;
  
    // y must be even now
    y = y >> 1; // y = y/2
    x = (x * x) % p;
}
return res;
}
  
// C# function to calculate
// number of digits in x
static int numberOfDigits(int x)
{
    int i = 0;
    while (x != 0) 
    {
        x /= 10;
        i++;
    }
    return i;
}
  
// C# function to print
// last 2 digits of 2^n
static void LastTwoDigit(int n)
{
Console.Write("Last " + 2 + 
              " digits of " + 2 + "^");
Console.Write(n + " = ");
  
// Generating 10^2
int temp = 1;
for (int i = 1; i <= 2; i++)
    temp *= 10;
  
// Calling modular exponentiation
temp = power(2, n, temp);
  
// Printing leftmost zeros. Since 
// (2^n)%2 can have digits less 
// then 2. In that case we need 
// to print zeros
for (int i = 0; 
         i < ( 2 - numberOfDigits(temp)); i++)
    Console.Write(0 + " ");
  
// If temp is not zero then print temp
// If temp is zero then already printed
if (temp != 0)
    Console.Write(temp);
}
  
// Driver Code
public static void Main() 
{
    int n = 72;
    LastTwoDigit(n);
}
}
  
// This code is contributed
// by ChitraNayal

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to find last
// 2 digits of 2^n
  
/* Iterative Function to
calculate (x^y)%p in O(log y) */
function power($x, $y, $p)
{
    $res = 1; // Initialize result
  
    $x = $x % $p; // Update x if it 
                  // is more than or
                  // equal to p
  
    while ($y > 0) 
    {
  
        // If y is odd, multiply 
        // x with result
        if ($y & 1)
            $res = ($res * $x) % $p;
  
        // y must be even now
        $y = $y >> 1; // y = y/2
        $x = ($x * $x) % $p;
    }
    return $res;
}
  
// PHP function to calculate
// number of digits in x
function numberOfDigits($x)
{
    $i = 0;
    while ($x
    {
        $x /= 10;
        $i++;
    }
    return $i;
}
  
// PHP function to print 
// last 2 digits of 2^n
function LastTwoDigit($n)
{
    echo("Last " . 2);
    echo(" digits of " . 2);
    echo("^" . $n ." = ");
  
    // Generating 10^2
    $temp = 1;
    for ($i = 1; $i <= 2; $i++)
        $temp *= 10;
  
    // Calling modular
    // exponentiation
    $temp = power(2, $n, $temp);
  
    // Printing leftmost zeros. 
    // Since (2^n)%2 can have
    // digits less then 2. In 
    // that case we need to
    // print zeros
    for ($i = 0; 
         $i < 2 - numberOfDigits($temp); $i++)
        echo (0);
  
    // If temp is not zero then
    // print temp. If temp is zero
    // then already printed
    if ($temp)
        echo ($temp);
}
  
// Driver Code
$n = 72;
LastTwoDigit($n);
  
// This code is contributed 
// by Shivi_Aggarwal 
?>

chevron_right


Output:

Last 2 digits of 2^72 = 96

Time Complexity: O(log n)

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.